
Benchmark Proposal: Verifying Learned Indexes of Databases

1 Background: learned index

Index structures are widely used in systems which enables
efficient data accesses. For example, B-Tree is a type of
index in databases which allows a database to quickly
pinpoint data positions in an underlying storage. As an
alternative, learned index structure uses neural networks
(NNs) to replace B-Trees for better performance.

One type of learned index, named Recursive Model
Index [1] (RMI), is depicted in Figure 1. RMI has multiple
stages and each stage has one or multiple models (NNs).
During a key lookup, the model in upper stages (starting
from stage 1) picks a model in the next stage to run, and a
final stage model predicts the data position for the key. As
a best practice [1], people use two-staged RMIs.

One challenge for RMIs is to ensure that models always
produce data positions within certain error-bounds, so that
RMIs can always find existing data (a required property
for any index structures). Original RMIs achieve this by
evaluating all existing keys on the trained NN models, and
replace those exceeding the error-bounds with traditional
B-Trees. But, this approach does not provide guarantees
for non-existing keys—the predicted data positions can be
arbitrary. This affects range queries whose upper/lower
bound of the rangemight be non-existing keys (see detailed
discussion in original RMI paper [1, §3.4]).
It will be great if we can somehow know whether NN

models have bounded errors for all keys, non-existing
keys included. NN-verification can help. Given a spec-
ification requiring that predicted positions are within an
error-bound, NN-verification can comprehensively check
whether models hold this property for all keys.

2 Benchmark: verifying RMIs

In this section, we propose a benchmark: verifying RMIs
to check whether all predicted positions—including pre-
dictions for non-existing keys—are within a predefined
error bound (denoted as ε).
We use the Integer Datasets [1, §3.7.1], in which keys

and positions are both integers on three different data dis-
tributions: normal, lognormal, and piecewise linear. The
stored data are sorted by their keys, a common scenario
in databases for supporting range queries (see Figure 2 as
an example).
For models, we follow the best practice RMI design

Model 1.1

Model 2.1 Model 2.2 Model 2.3 ...

Key

Position

St
ag

e
1

St
ag

e
2

Figure 1: A two-stage Recursive Model Index (RMI). In this
example, this RMI takes a “Key” as an input, chooses “Model
1.1” and “Model 2.1” for prediction, and finally produces the
“Position” which is supposed to be where the data (indexed by
“Key”) is located in the database.

which has two stages: stage 1 has one large NNmodel with
multiple fully connected layers, with ReLu as activation
functions; stage 2 has many small NN (or linear) models.
The RMI’s input is an integer (the key) and the prediction
is also an integer (the position).
The required property is as follows. For all keys, the

RMI’s predicted position must be atmost ε slots away from
its true position (for existing keys) or the position that the
data should be if the key were inserted (for non-existing
keys).

RMI specifications. To design a specification for the re-
quired property, we partition the input space (regarding
existing keys) into segments. The specifications dictates
that all predictions for the keys within one segment must
fall into the corresponding output range, which bounded
by the parameter ε. For example, an input segment [xi,xj]
has a corresponding prediction range [yi,yj]; that is, key xi
and xj are located at position yi and yj, respectively. The
specification may have a constraint 〈[xi,xj], [yi−ε,yj +ε]〉.
In particular, specifications have two parameters, the

size of segment and the ε. The smaller the segment, the
stricter the specification, similarly for ε. Database users
can tune these parameters for their own needs. In our
proposed benchmark, we provide a set of specifications
that combine different segment sizes and ε to simulate
different demands.

Take specifications in Figure 2 as an example. The seg-
ment we choose is [2,97] (in NN input space) which cor-
responds to [0,10] (in NN output space). In specifications,

1

Partition id = 1

2 8 14 ... 97 ...

0 1 2 ... 10 ...

Key

Position
Data

Model 1.1

Model 2.1

...

Key = 8

Position = 3

Specifications:
{<X=[2, 97], Y=[0-ε, 10+ε]>, …}

segment 1

Verified
RMI

Figure 2: An example of an RMI with specifications. On the top
is the (sorted) data that the RMI indexes. On the bottom is a two-
staged RMI with specifictions. In this example, the RMI predicts
that the data indexed by “Key=8” should locate at “Position=3”,
and the true position is “1” (see “Data”). This prediction satisfies
the specification because “Key=8” is in the segment [2,97] and
its prediction “Position=3” is within the range [0− ε,10+ ε].

〈X = [2,97],Y = [0−ε,10+ε]〉 reads as: if a key is in the
range of [0,97], then the predicted position must be within
[0−ε,10+ε], where “0” and “10” are the true positions of
“Key=2” and “Key=97”, respectively; ε is the error bound.
As we can see in Figure 2, the range [2,97] captures the
existing keys (e.g., “Key=8”) and all non-existing keys
that would have been placed immediately before or after
the existing ones. And, the predicted positions of all these
keys should be at most len(segment)+ ε slots away from
their true positions.

References

[1] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The
case for learned index structures. In Proceedings of the 2018
International Conference on Management of Data, pages 489–504,
2018.

2

	Background: learned index
	Benchmark: verifying RMIs

