
Building Verified Neural Networks with Specifications for
Systems

Cheng Tan, Yibo Zhu, and Chuanxiong Guo
ByteDance Inc.

Abstract
Neural networks (NNs) are beneficial to many services, and
we believe systems—such as OSes, databases, networked
systems—are not an exception. However, applying NNs in
these critical systems is challenging: people have to risk get-
ting unexpected outcomes from NNs since NN behaviors are
not well-defined. To tame these uncertain behaviors, we in-
troduce a framework ouroboros which enables system de-
velopers to build verified NNs that follow user-defined spec-
ifications. These specifications comprise input and output
constraints which characterize the behaviors of a NN. We
do a case study on database learned indexes to demonstrate
that training verified NN models is possible. Though many
challenges remain, ouroboros enables us, for the first time,
to apply NNs in critical systems with confidence.

ACM Reference Format:
Cheng Tan, Yibo Zhu, and Chuanxiong Guo . 2021. Building Ver-
ified Neural Networks with Specifications for Systems. In ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys ’21), August 24–
25, 2021, Hong Kong, China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3476886.3477508

1 Introduction
Neural networks (NNs) have been widely used, and many
applications and services benefit from applying them. We
believe systems (like OSes, databases, networked systems)
are not an exception. But, one major challenge to adopt NNs
in these critical systems is NN’s uncertainty: NNs do not
have well-defined behaviors and they may produce unexpected
results [8, 12]. Such uncertainty is particularly dangerous
for critical components in a system, where any unexpected
behavior may result in an incorrect system state.

NNs are complicated black boxes that are difficult to reason.
Restraining NN’s uncertainty by adding constraints either
directly to NNs or to training process is hardly conceivable, as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’21, August 24–25, 2021, Hong Kong, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8698-2/21/08. . . $15.00
https://doi.org/10.1145/3476886.3477508

people have limited understanding of NN internals. In fact, it
is notoriously hard to explain NN’s behaviors, and explainable
artificial intelligence [3, 6] is an active research topic.

Despite the uncertainty nature of NNs, there is a technique—
neural network verification (NN-verification)—that can help.
NN-verification verifies whether a NN satisfies some given
properties. In particular, given a pair of input and output con-
straints (denoted as X and Y, respectively), NN-verification
checks whether a NN holds the following property: if an input
x meets the input constraints (x ∈ X), then the corresponding
output y must satisfy the output constraints (y ∈ Y).

In principle, NN-verification can help verify (hence build)
NNs that meet pre-specified properties. But, in practice, NN-
verification has two major limitations. First, NN-verification
is powerful but expensive [1, 12]. Though researchers have
made significant progress [4, 8, 13, 22, 23] in accelerating the
verification, NN-verification still takes a long time (in hours
or even days) to verify large NNs. Second, it is challenging to
specify the expected NN behaviors by input and output con-
straints only. This is especially true for those tasks which do
not have canonical outputs for unseen inputs. As an example,
for recommending movies to a new user, it is unclear what
input/output constraints should be considered as “expected”.

However, we observe and argue that NNs for systems [7, 10,
11, 14, 15, 20, 21] are a perfect fit for NN-verification: NNs
for systems are usually small and have clear semantics for
inputs and outputs. Take database learned indexes [10] as an
example. Their NN models are tiny with fewer than 100 neu-
rons, hence are cheap to verify. Furthermore, NNs have clear
semantics and their expected behaviors are unambiguous—
NN’s inputs are database keys and outputs are data positions
on the underlying storage (e.g., disks); we expect that NN’s
outputs (predicted positions) should not be too far away from
data’s true positions.

We believe our observation of NN for systems is generally
true, as systems often require NNs to run fast (hence NNs
must be tiny) and systems’ inputs and outputs have clear se-
mantics (hence NNs have unambiguous expected behaviors).
In addition, we believe many system components can benefit
from applying NNs, including memory allocation [14], data-
base query planning [11], memory prefetching [7], circuits
design [21], and datacenter scheduling [15].

To build verified NNs for systems, our main idea is to use
NN-verification as a verifier and check whether a trained NN
satisfies user-defined properties, which we call a specification.
If the NN passes the verification, we have a verified NN that

https://doi.org/10.1145/3476886.3477508
https://doi.org/10.1145/3476886.3477508

APSys ’21, August 24–25, 2021, Hong Kong, China Cheng Tan, Yibo Zhu, and Chuanxiong Guo

has well-defined behaviors characterized by the specification;
otherwise, we retrain the NN.

This paper introduces a framework, ouroboros, that achieves
the aforementioned idea. Ouroboros takes the NN, data, and
the specification as inputs to train a verified model. In the train-
ing process, ouroboros checks whether the current candidate
NN satisfies the specification. If it does, ouroboros outputs
the model; if it doesn’t, ouroboros generates specification-
aware data from the counterexamples which violate the speci-
fication, and retrains the model with these specification-aware
data until it passes the verification.

We did a preliminary case study with database learned
index [10], which is the first (arguably) practical NN-based
index structure for databases. We reproduce the NNs described
in their paper [10], and design a specification for the learned
index. That is, for all keys, the NN’s predicted positions in
the database are at most 𝜖 slots away from their true positions,
where 𝜖 is an error bound provided by users (§3.2).

Note that a verified NN does not outperform unverified
ones in terms of model accuracy or inference speed. After all,
they have the same architecture (i.e., NN computation graph).
Instead, a verified NN has well-defined behaviors—all its
outputs follow specifications regarding the inputs, and this is
formally verified by ouroboros.

Though our case study shows that training a verified NN is
possible, many challenges arise and lots of research questions
are opened. We list a few here (more in §6):

• Our current retrain process is tedious, and there is no
guarantee that users will finally have a verified model. For
example, a specification might be too strict, and retrains
cannot succeed. So, providing some types of guarantees
to the retrain process is our future work.

• Though systems have clear semantics, describing specifi-
cations still requires significant manual efforts. It will be
helpful to have common primitives for describing spec-
ifications, but how to design these primitives is unclear.
Another topic is to automatically generate specifications.

• Since training verified NNs is possible, we are interested
in discovering new components in critical systems that
can benefit from being replaced by verified NNs, some of
which were impossible due to NN’s undefined behaviors.

Despite all the above challenges and open questions, ouroboros
gives us a way, for the first time, to train a verified NN with
specifications. It opens a new dimension in system design
where developers can safely replace critical system compo-
nents with NNs.

2 Background
In this section, we provide some necessary background for
NN-verification (§2.1), and introduce learned index, which
uses NNs as database indexes (§2.2).

Model 1.1

Model 2.1 Model 2.2 Model 2.3 ...

Key

Position

St
ag

e
1

St
ag

e
2

Figure 1. A two-stage Recursive Model Index (RMI). In this example,
this RMI takes a “Key” as an input, chooses “Model 1.1” and “Model
2.1” for prediction, and finally produces the “Position” which is
supposed to be the data location indexed by “Key” in the database.

2.1 Neural network verification
NN-verification [12] is a technique that formally verifies whether
a NN satisfies a specification. A specification comprises a set
of input/output constraint pairs; each pair represent a state-
ment that if inputs (of the NN) satisfy the input constraint,
then the corresponding outputs must satisfy the output con-
straint. If the NN meets all constraints in the specification,
NN-verification accepts. Otherwise, NN-verification rejects
and provides counterexamples.

Formally, consider a NN as a function f whose inputs are
x ∈ Dx ⊆ Rn and outputs are y ∈ Dy ⊆ Rm, where n and
m are the input and output dimensions. We denote a pair of
input/output constraint as ⟨x ∈ X, y ∈ Y⟩, where X and Y
are subsets of the input and output domains (X ⊆ Dx and
Y ⊆ Dy). The problem of NN-verification is to check whether
the following assertion holds for f (the NN):

∀x, x ∈ X =⇒ y = f (x) ∈ Y
NN-verification is already in use in practice. One example

is to verify NNs in airborne collision avoidance systems [8].
These systems are used by aircraft to avoid midair collisions. In
this scenario, inputs are sensor data including distance, speed,
heading angle of the aircraft itself and other intruder aircraft;
outputs are action advisories, including clear-of-conflict, weak
left/right, strong left/right. And the specifications are manually
defined action properties.

Multiple approaches are available for verifying NNs, in-
cluding reachability [23], optimization [8, 13], search [4], and
combinations of these techniques [22]. Our design uses NN-
verification as a black-box, thus we omit NN-verification’s
technical details in this paper. We refer readers to this sur-
vey [12] for details. But it is worth noting that different ap-
proaches have diverse goals and varied performance. Choos-
ing a suitable verification method is a key factor of successfully
training a verified NN (§4).

2.2 Learned index
Index structures are widely used in systems which enables
efficient data accesses. For example, B-Tree is a type of index

Building Verified Neural Networks with Specifications for Systems APSys ’21, August 24–25, 2021, Hong Kong, China

which allows a database to quickly pinpoint data positions on
the underlying storage. As an alternative, learned index struc-
ture [10] uses NNs to replace B-Trees for better performance.

Next, we introduce a type of learned index, named Recursive
Model Index (RMI), which is depicted in Figure 1. RMI has
multiple stages and each stage has one or multiple models
(NNs). During a key lookup, RMI picks one model in each
stage to run; models in upper stages (starting from stage 1)
decide the model in the next stage; and a final stage model
predicts the data position for the key. As a best practice [10],
people use two-stage RMIs.

One challenge for RMIs is to ensure that models always
produce data positions within certain error-bounds, so that
RMIs can always find existing data in the database (a required
property for any index structures). Original RMIs achieve this
by evaluating all existing keys on the trained NN models, and
replace those exceeding the error-bounds with traditional B-
Trees. But, this approach does not provide guarantees for non-
existing keys—the predicted data positions can be arbitrary.1
This affects range queries whose upper/lower bound of the
range might be non-existing keys.

It will be great if we can somehow know whether NN mod-
els have bounded errors for all keys (including non-existing
keys). NN-verification can help. Given a specification assert-
ing that predicted positions are within an error-bound, NN-
verification can comprehensively check whether models hold
this property for all keys. In addition, by using the counterex-
amples from NN-verification, we can retrain NNs to achieve
the desired error-bounds, as we will show in section 3.2.

3 System design
In section 3.1, we introduce ouroboros, a framework to train
verified NNs. We further show a case study of training a
verified RMI in section 3.2.

3.1 Ouroboros overview
Ouroboros trains verified NNs that satisfies a pre-defined
specification. Figure 2 depicts the system’s workflow.

First, users provide a set of data that the NN will be trained
on and a specification that describes the required properties of
the NN. After receiving the data, ouroboros starts a normal
training process and produces a candidate model. Then, the
model is sent to an NN verifier which comprehensively checks
whether the NN satisfies the specification for any possible in-
puts. The NN verifier achieves this by running NN-verification
algorithms (§2.1).

If the NN verifier accepts, then ouroboros builds what
users want—a model with formally verified properties (the
specification). If the NN verifier rejects, it generates coun-
terexamples that violate the specifications: data satisfying the

1As discussed in the RMI paper [10, §3.4], original RMIs can handle non-
existing keys by forcing all NN models to be monotonic or using exponential
search techniques, which require extra efforts.

Model
training

Data Specification

NN verifier

Specification-aware
 data generator Pass?

Candidate
model

Counter-
examples

Specification-
aware data

User

Verified
model

YesNo

Figure 2. Ouroboros’s workflow. The dotted frame is ouroboros
system. Users provide data and specifications and receive verified
models that satisfy the specifications.

input constrains whose corresponding outputs do not meet
the output constraints. Formally, counterexamples are a set of
data {x ′ | x ′ ∈ X ∧ f (x ′) ∉ Y} where X and Y are input
and output constraints (§2.1).

By analyzing the counterexamples, ouroboros generates
specification-aware data that represents the edge cases whose
outputs should have been included inY. With these specification-
aware data, ouroboros retrains a new candidate model and
verifies whether the new model satisfies user’s specification.
In our current implementation, the specification-aware data
generator is a function that simply pairs counterexamples (a
set of keys) with the positions that the keys should be if they
were inserted into the database (see also §3.2 and §6).

Ouroboros runs this process multiple rounds until getting
a model that passes NN-verification, then we have a verified
model. Or we fail to train one, if ouroboros times out.

3.2 Case study: training a verified RMI
In this section, we study how to build a verified RMI such that
all predicted positions—including predictions for non-existing
keys—are within a predefined error bound (denoted as 𝜖). We
first elaborate the specification for a two-stage RMI, and then
introduce how to train a verified RMI using NN-verification.

Our current approach, as a starting point, is rudimentary
(see our future work in §6). The main takeaway is that we are
able to build a verified RMI by using NN-verification.

This case study uses the Integer Datasets [10, §3.7.1], in
which keys and positions are both integers. The stored data
are sorted by their keys, a common scenario in databases for
supporting range queries. We follow the best practice RMI
which has two stages: stage 1 has one NN model with two
16-neuron fully connected layers, and ReLU as activation
functions; stage 2 has 10 linear models. The RMI’s input is an
integer (key) and the prediction is also an integer (position).
See an RMI example in Figure 3.

APSys ’21, August 24–25, 2021, Hong Kong, China Cheng Tan, Yibo Zhu, and Chuanxiong Guo

Partition id = 1

2 8 14 ... 97 ...

0 1 2 ... 10 ...

Key

Position
Data

Model 1.1

Model 2.1

...

Key = 8

Position = 3

Specification 1.1:
{<X=[0, 97], Y=[0, 1]>, …}

Partition 1
(for Model 2.1)

Specification 2.1:
{…, <X=(2, 14), Y=[1-ε, 1+ε]>, …}

Verified
RMI

Figure 3. An example of a RMI. On the top is the (sorted) data that
the RMI indexes. On the bottom is a verified two-staged RMI with
specifications for each model. In this example, the RMI predicts that
the data indexed by “Key=8” should locate at “Position=3”, and the
true position is “1” (see “Data”). If the user-defined error bound is
less than 2 (𝜖 < 2), this RMI will be rejected by NN-verification
because “Model 2.1” does not satisfy “Specification 2.1”.

The required property is as follows. For all keys, the RMI’s
predicted positions must be at most 𝜖 slots away from its true
position (for existing keys) or the position that the data should
be (for non-existing keys).
RMI specifications. To design a specification for the required
property, we partition the existing key space into 10 parts,
each of which is assigned to one model in stage 2. That is,
partition 1 is assigned to the first stage 2 model (Model 2.1 in
Figure 3); partition 2 is assigned to the second model, and so
forth.

Now, we define specifications for models of different stages
separately. First, for the model of stage 1, if a key x is within
the key range of partition i, then the prediction, which indi-
cates the next model in stage 2, must be in range [i − 1, i + 1].
This means that the prediction of the next model is at most
one “slot” away from the model it should be. Second, for
a model in stage 2 (e.g., Model 2.1), we check whether all
keys corresponding to this model satisfy the property that
the predicted positions are within 𝜖-slot away from their true
positions. The corresponding keys include the partition as-
signed to this model (e.g., Partition 1 for Model 2.1) and the
keys that are “accidentally” assigned by the stage 1 model
(notice that the error bound for the prediction of Model 1.1 is
one-slot-away).

Take specifications in Figure 3 as an example. In specifi-
cation 1.1, the first constraint pair depicts input/output con-
straints for partition 1, which is ⟨X = [0, 97],Y = [0, 1]⟩.

This constraint pair reads as, if a key x ∈ X, then the predic-
tion of Model 1.1 must be in Y. Notice that [0, 97] is the key
range for partition 1, and the range [0, 1] represents that either
the first or second model in stage 2 will be used.

In specification 2.1, ⟨X = (2, 14),Y = [1 − 𝜖 , 1 + 𝜖]⟩ reads
as: if a key is in the range of (2, 14), then the predicted position
must be within [1 − 𝜖 , 1 + 𝜖], where “1” is the true position
of “Key=8” and 𝜖 is the error bound. As we can see in Fig-
ure 3, the range (2, 14) captures the existing “Key=8” and all
non-existing keys that would have been placed immediately
before or after this key. And, the predicted position of all these
keys should be at most 𝜖 slots away from the true position of
“Key=8”, which is position “1”.
Training a verified RMI. In the first round, ouroboros trains
the RMI as described in the original RMI paper [10, Algorithm
1]. Ouroboros uses the whole data to train the model in stage
1. For stage 2 models, ouroboros train each model with their
corresponding partitions and the keys that are in adjacent
partitions but assigned to this model by stage 1 model.

After getting a candidate RMI, instead of evaluating the ex-
isting keys and replace unfulfilled NNs with B-Trees, ouroboros
uses NN-verification to check whether the trained RMI sat-
isfies the specifications. Ouroboros’s verifier adopts a ver-
ification toolbox named NeuralVerification.jl [2], and
chooses a solver ReluVal [22]. The verifier encodes the con-
straint ranges in specifications to Hyperrectangle, and in-
vokes the ReluVal solver to verify the specifications.

If the verifier rejects, it returns a counterexample x ′, which
often is a non-existing key. Ouroboros calculates the true
corresponding position y′ for x ′ by pretending to insert x ′, and
then adds the data point (x ′, y′) into the training data. With
the new data, ouroboros retrains the models. A future work
is to design an algorithm to generate a set of new specification-
aware data from few counterexamples. Ouroboros repeats
training until finding an RMI that passes the NN-verification.

4 Preliminary results
Implementation. We reimplement RMIs based on the descrip-
tion in the paper [10] with 500 lines of Python and Tensorflow
code. We build the NN-verification in 140 lines of Julia code
on top of a verification toolbox NeuralVerification.jl [2]. Fi-
nally, we use a bash script (50 lines) to coordinate training and
verification. All the experiments were executed on a MacBook
pro with a 2.6 GHz 6-Core Intel i7 CPU and 32GB memory.
Dataset, RMI, and specification. In this experiment, we use
a synthetic dataset, Integer Datasets [10, §3.7.1], which has
190K unique integer values. These values are randomly sam-
pled from a range of 0 to 1M, and are stored in a sorted array.
Here values serve as keys (inputs to NNs), and their posi-
tions in the sorted array represent data positions in a database
(outputs of NNs).

Building Verified Neural Networks with Specifications for Systems APSys ’21, August 24–25, 2021, Hong Kong, China

The major difference between our version and the original
Integer Dataset is that we sample data uniformly random rather
than in a lognormal distribution. We do this for two reasons.
First, randomly sampled dataset is an easier case, and we want
to start from the most basic dataset. Second, even for this easy
dataset, training a verified RMI is challenging. As we will
show later, a stage 2 model was retrained 13 times before it
finally passes the verification, with relaxing 𝜖 twice (elaborate
below).

As mentioned earlier, we follow the best practice RMI,
which has 2 stages: stage 1 has one NN model with two fully-
connected layers with 16 neurons each. The activation function
is ReLU. Stage 2 has 10 linear models.

We implement specifications for models of stage 1 and
stage 2 separately. For the specification of stage 1, there are
10 pairs of input/output constraints, each of which represents
a partition. The specifications for stage 2 models contain 190k
constraint pairs in total, and each pair represent a data point’s
range (see §3.2). On average, a single stage 2 specification
has 19k pairs of input and output constraints.
Training a verified RMI. We follow the RMI training proce-
dure as described in the original paper [10, Algorithm 1],
except that we replace evaluating existing keys with NN-
verification. During training, the stage 1 model passes ver-
ification in the first round (no retrain needed). This aligns with
our expectation because it is easy to learn the general trend of
a dataset without caring too much about details. The original
RMI paper has similar observations.

On the contrary, stage 2 models are much harder to train
(the “last mile problem”). We start stage 2 model training
with 𝜖 = 100; meanwhile, if a model is retrained five times
and still fails the verification, we increase 𝜖 by 50 for this
model’s specification, which we call 𝜖-relaxation. Also, note
that 𝜖 = 100 is a strong error bound in practice, as databases
usually group data into blocks. Two positions differ by 100 are
probably still in the same block, or in two consecutive blocks.

In stage 2 model training, six out of ten models pass in the
first round without retraining (𝜖 = 100). Three models are
retrained six times and end up with 𝜖 = 150. One model is
particularly hard to train and is retrained 13 times. It finally
passes the verification with 𝜖 = 200.
Verification performance. We run NN-verification with a
ReluVal solver [22]. In our experiment, verifying the model
of stage 1 takes 4 seconds, and verifying all stage 2 models
takes 7 seconds; that is 0.7 second each.

Beyond ReluVal, we also experimented with another solver,
BaB [4]. However, BaB is much slower than ReluVal in our
case: it spends 18 and 155 seconds for verifying stage 1 and 2,
respectively. This experiment shows that choosing a suitable
solver is critical for verification performance.

5 Related work
The most related work to ouroboros is NeVer [19], a pioneer
of NN-verification proposed a decade ago. NeVer has several
innovations. The one closely related to ouroboros is a tech-
nique called counterexample triggered abstraction-refinement
(CETAR), namely using counterexamples to repair the behav-
ior of a NN. If we ignore the technical details (for example,
NeVer uses abstract interpretation hence requires refinements,
whereas ouroboros doesn’t), ouroboros’s retraining process
is a reminiscence of CETAR, but in the context of building
NNs for systems. The major difference is that ouroboros
needs to design specifications according to system semantics,
for example, RMI specifications (§3.2), which is non-trivial
and requires system’s domain knowledge.

Several recent works [5, 9] use NN-verification to check
and/or visualize (unexpected) behaviors of NNs used in net-
worked systems. Ouroboros uses similar techniques but stud-
ies a different problem; we focus on building verified NNs in-
stead of testing or analyzing NNs. Consequently, ouroboros
meets more challenges (which are also opportunities), includ-
ing retraining NNs with specification-aware data, designing
generalized specification primitives, partial and incremental
verifications (more detailed discussion in §6).
NN-verification’s applications. As mentioned in section 2.1,
NN-verification has been extensively studied [4, 8, 12, 13, 22,
23], and has several main applications, including verifying
the robustness of NNs against adversarial attacks [16] and
ACAS Xu [8], an airborne collision avoidance system. One
can find standardized benchmarks of these applications in
VNN-COMP [1], a NN-verification competition.

In this paper, we observe that NNs for systems [7, 10, 11,
14, 15, 20, 21] is a new category of applications for NN-
verification, which is a perfect fit to verify because NNs for sys-
tems are usually small (hence easy to verify) and have unam-
biguous semantics (hence their behaviors are straightforward
to specify). We argue that verifying NNs for systems expands
NN-verification’s applications, and further NN-verification
can significantly improve the safety of NNs for systems.
Testing NNs. There is a line of work [17, 18] to detect misbe-
havior of NNs by testing (see more machine learning testing in
this survey [24]). For example, DeepXplore [17] is a whitebox
testing framework that methodically construct the dataset for
testing to reach high neuron coverage, a metric representing
how much proportion of the tested NN is covered by the test.
These are practical and efficient tools for discovering unex-
pected behaviors. However, testing cannot prove the absence
of misbehavior, whereas NN-verification (hence ouroboros)
can. Ouroboros provides a rigorous guarantee that a verified
NN always follows the pre-defined specifications.

APSys ’21, August 24–25, 2021, Hong Kong, China Cheng Tan, Yibo Zhu, and Chuanxiong Guo

6 Discussion, limitations, and future work
Current ouroboros’s design has multiple limitations, which
inspire our future work. We discuss three of them in detail
below. We also briefly mention other interesting topics at the
end of this section.

First, ouroboros provides no guarantee on finally produc-
ing a verified NN. Ouroboros does not explicitly manage the
training process, except for adding specification-aware data
(counterexamples) to the training dataset. Our future work is to
design a specification-oriented training, which micro-manages
the training steps with specifications in mind. Another ap-
proach is to design a good specification-aware data generating
algorithm that generates representative data to “push” the
model training in the right direction.

Second, ouroboros’s current specification is ad hoc. Our
future work is to design a domain specific language (DSL) for
specifications. This DSL will provide pre-defined primitives
for common systems (for example, OS, network, storage),
which assist developers in specifying their wanted properties.

Also, it is unclear whether specification development will be
a heavy burden for developers. In the case of learned index, the
specification is straightforward, but this might not be always
true—we could imagine a non-trivial task to design safety
specifications for some complicated components, for example,
database concurrency control.

Finally, efficiency training is always desirable, but ouroboros
suffers from many rounds of retraining, which include nor-
mal NN training and NN-verification. Our future work is
to accelerate this retraining process by incremental training
and incremental verification. The guiding intuition is that, for
each round of retraining, we do not tackle a completely new
problem. Instead, we face a similar problem with updates on
some parameters: updated training dataset for NN training
and updated NN models for NN-verification. There ought to
be a way to leverage the information from previous rounds for
accelerating the retraining, which requires further research.

Beyond the above three directions, many other topics are
worth exploring as well. For example, what systems can benefit
from ouroboros, and which components can be replaced by
verified NNs? Since performance of different NN-verification
techniques varies, how can ouroboros choose the verifier’s
solver that fits current workload the best? Can ouroboros
detect whether a specification is too strict to achieve? If so,
ouroboros can directly ask developers to revise, without
having to waste cycles on retraining.
Summary. To recap, ouroboros is the first framework that
empowers us to train a verified NN with user-defined specifica-
tions. We believe this will significantly broaden the ways that
people apply NNs in today’s systems because now developers
can have faith in their NNs.

References
[1] competition for neural network verification (VNN-COMP).

https://sites.google.com/view/vnn20/vnncomp.
[2] Neuralverification.jl. https://github.com/sisl/NeuralVerification.jl.
[3] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,

A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, et al.
Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information
Fusion, 58:82–115, 2020.

[4] R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar. A unified
view of piecewise linear neural network verification. arXiv preprint
arXiv:1711.00455, 2017.

[5] A. Dethise, M. Canini, and N. Narodytska. Analyzing Learning-Based
Networked Systems with Formal Verification. In Proceedings of
INFOCOM’21, May 2021.

[6] F. K. Došilović, M. Brčić, and N. Hlupić. Explainable artificial
intelligence: A survey. In 2018 41st International convention on
information and communication technology, electronics and
microelectronics (MIPRO), 2018.

[7] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan. Learning memory access patterns.
In International Conference on Machine Learning, 2018.

[8] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient smt solver for verifying deep neural networks. In
Proc. CAV, 2017.

[9] Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying
deep-rl-driven systems. In Proceedings of the 2019 Workshop on
Network Meets AI & ML, pages 83–89, 2019.

[10] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for
learned index structures. In Proceedings of the 2018 International
Conference on Management of Data, 2018.

[11] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica.
Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196, 2018.

[12] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer.
Algorithms for verifying deep neural networks. arXiv:1903.06758,
2019.

[13] A. Lomuscio and L. Maganti. An approach to reachability analysis for
feed-forward relu neural networks. arXiv preprint arXiv:1706.07351,
2017.

[14] M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard, K. S. McKinley,
and C. Raffel. Learning-based memory allocation for c++ server
workloads. In Proc. ASPLOS, 2020.

[15] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh. Learning scheduling algorithms for data processing
clusters. In Proc. SIGCOMM. 2019.

[16] C. Müller, G. Singh, M. Püschel, and M. Vechev. Neural network
robustness verification on gpus. arXiv preprint arXiv:2007.10868,
2020.

[17] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles, pages 1–18, 2017.

[18] K. Pei, Y. Cao, J. Yang, and S. Jana. Towards practical verification of
machine learning: The case of computer vision systems. arXiv preprint
arXiv:1712.01785, 2017.

[19] L. Pulina and A. Tacchella. Never: a tool for artificial neural networks
verification. Annals of Mathematics and Artificial Intelligence,
62(3):403–425, 2011.

[20] S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav. Deepconf:
Automating data center network topologies management with machine
learning. In Proceedings of the 2018 Workshop on Network Meets AI &
ML, 2018.

[21] H. Wang, J. Yang, H.-S. Lee, and S. Han. Learning to design circuits.
arXiv preprint arXiv:1812.02734, 2018.

https://sites.google.com/view/vnn20/vnncomp
https://github.com/sisl/NeuralVerification.jl

Building Verified Neural Networks with Specifications for Systems APSys ’21, August 24–25, 2021, Hong Kong, China

[22] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal security
analysis of neural networks using symbolic intervals. In Proc. USENIX
Security, 2018.

[23] W. Xiang, H.-D. Tran, and T. T. Johnson. Reachable set computation
and safety verification for neural networks with relu activations. arXiv

preprint arXiv:1712.08163, 2017.
[24] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning testing:

Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, 2020.

	Abstract
	1 Introduction
	2 Background
	2.1 neural network verification
	2.2 learned index

	3 System design
	3.1 ouroboros overview
	3.2 Case study: training a verified RMI

	4 Preliminary results
	5 Related work
	6 Discussion, limitations, and future work
	References

