
Building Verified Neural Networks
for Computer Systems with Ouroboros

Tianhao Wei 1 Zhihao Jia 1 Changliu Liu 1 Cheng Tan 2

Abstract
Neural networks are powerful tools. Applying them in computer systems—operating systems, databases, and
networked systems—attracts much attention. However, neural networks are complicated black boxes that may
produce unexpected results. To train networks with well-defined behaviors, we introduce ouroboros, a system that
constructs verified neural networks. Verified neural networks are those that satisfy user-defined safety properties,
known as specifications. Ouroboros builds verified networks by a training-verification loop that combines deep
learning training and neural network verification. The system employs multiple techniques to fill the gap between
today’s verification and the properties required for systems. Ouroboros also accelerates the training-verification
loop by spec-aware learning. Our experiments show that ouroboros can train verified networks for five applications
that we study and has a 2.8× speedup on average compared with the vanilla training-verification loop.

1 Introduction
Deep learning and neural networks are powerful. They have
contributed to many fields, including computer vision, natu-
ral language processing, and speech recognition. Naturally,
it attracts increasing attention to apply deep learning tech-
niques to tasks in computer systems. For example, neural
networks have been used for database indexes (Kraska et al.,
2018), Internet congestion control (Jay et al., 2019), database
query optimization (Krishnan et al., 2018), memory prefetch-
ing (Hashemi et al., 2018), memory allocator (Maas et al.,
2020), I/O latency prediction (Hao et al., 2020), and circuit
design (Wang et al., 2018a).

However, it remains challenging to use neural networks in
critical components of systems. This is because the correct-
ness of neural networks is defined by statistical performance
on a dataset but not by deterministic behavior on specific
rules. As a result, neural networks are generally treated as
black boxes that may produce arbitrary results on unseen
inputs. For example, a neural network based scheduler may
attempt to schedule a job that is invalid (Mao et al., 2016).

The problem cannot be addressed solely by enhancing train-
ing. On the one hand, the training dataset cannot enumerate
all possible valid cases. For example, if one wants to train a
neural network as a database index, the training dataset is un-
able to cover all possible keys (both existing and non-existing
keys) because there are infinitely many of them. On the other
hand, training cannot prevent neural networks from produc-

1CMU 2Northeastern University. Correspondence to: Cheng
Tan <c.tan@northeastern.edu>.

Proceedings of the 6th MLSys Conference, Miami Beach, FL, USA,
2023. Copyright 2023 by the author(s).

ing unexpected results: even if all training data follows a
safety rule, the network may violate the rule. For example,
though all training data is sampled from a monotonic func-
tion, the neural network may fail to be monotonic. Wang
et al. (2020) have seen this in learned cardinality estimation.

The lesson learned is that traditional training cannot enforce
a neural network to obey specific rules. In this paper, we
ask: how to train a neural network that verifiably complies
with user-provided safety rules?

Prior work has introduced override rules (Mao et al., 2016;
Katz, 2020) that update network outputs postmortem if they
are invalid. However, this approach does not work for many
systems for three reasons. First, not all safety properties can
be specified by override rules. Consider schedulers as an
example. It is unclear how to describe the non-starvation
requirement as an override rule to fix individual scheduling
decisions. Second, override rules may defeat the benefit
of using neural networks in the first place. Many systems
use neural networks because networks have smaller memory
footprints and run faster. For example, learned database in-
dexes (Kraska et al., 2018) use ML models to replace B-trees
for performance. However, with override rules, the learned
index will run slower. Finally, as a separate component, over-
ride rules must be synchronous with neural networks, which
is error-prone during maintenance (Katz, 2020).

Instead of fixing outputs postmortem, we directly train neu-
ral networks that strictly follow user-provided safety prop-
erties, which we call verified neural networks. To do so,
we introduce a system, ouroboros. Ouroboros combines
deep learning training and neural network verification to
train verified networks. Ouroboros trains a network in a
traditional approach and uses neural network verification

verified
NN

data

spec

code training verification

candidate NN

fail

training-verification loop

pass

Figure 1: Training-verification loop overview. The training-
verification loop requires normal training inputs (“data” and
“code”) and a specification (“spec”), and produces a verified neural
network (“verified NN”) that complies with the specification if the
loop successfully finishes.

(NN-verification) to check if the candidate network satisfies
user-provided properties. If yes, ouroboros successfully
builds a verified neural network; otherwise, it iterates the
training and verification. Figure 1 overviews this process.

The idea of this training-verification loop is not new. It
has been extensively explored by multiple communities:
in control theory, this is the classic feedback loop (Doyle
et al., 2013); in programming language, this is called
counterexample-guided inductive synthesis (Solar-Lezama,
2013); in deep learning, this is known as counterexample-
guided learning (Dreossi et al., 2018) or certified robust
training (Shi et al., 2021; Müller et al., 2022). Pulina & Tac-
chella (2011) and others (Gowal et al., 2018; Zhang et al.,
2019a) have explore how to build robust neural networks.

Compare with prior work, ouroboros is the first (a) end-
to-end system to train verified neural networks that (b)
fully comply with (c) safety properties of computer systems.
There are no prior systems that simultaneously provide (a)–
(c). In particular, different from traditional robust models
such as robust image classifiers (Bertsimas et al., 2011), neu-
ral networks for systems (short as NN4Sys) require fully
compliance with the provided safety properties; otherwise,
their usage in critical scenarios poses safety risks.

To build verified NN4Sys, there are two major challenges:

Challenge 1: verification of diverse properites. Ensuring
correctness in computer systems such as operating systems,
databases, and network systems requires sophisticated prop-
erties, which we call specifications. This differs from today’s
focus on robustness properties, which simply check for all in-
puts in an input domain, whether outputs fall within a given
output domain. Through studying NN4Sys applications, we
have observed tha developers also demand other categories
of specifications, specifically, probabilistic specifications
and monotonicity specifications, While techniques exist to
address these specifications (Weng et al., 2019; Liu et al.,
2020), no prior work has integrated all three specification
verifications under a unified framework.

Challenge 2: full compliance with specifications. Another
unique challenge of building verified neural networks for

systems is achieving full compliance. Unlike traditional
machine learning tasks, systems require specifications to
be satisfied at all time, as the consequences of violating
them can be severe. To achieve full compliance, the learning
procedure must place emphasis on learning from the speci-
fications; meanwhile, it is essential to balance the focus on
specifications and learning from the training data, which
represents average performance. It is a challenge to train
networks that perform well on average cases and maintain
reliability under worst cases.

In particular, this paper makes the following contributions:

• Supporting diverse specifications (§4). We integrate
three categories of specifications—reachability speci-
fications, probabilistic specifications and monotonicity
specifications—into a unified framework to support con-
structing verified NN4Sys.

• Spec-aware learning (§5). We introduce spec-aware
learning that accelerates learning from specifications by
combining multiple techniques, including spec-aware
data sampling and early rejection.

• A built system and five verified NN4Sys (§6, §7). We
implement ouroboros as an end-to-end system and ex-
periment with it on five existing applications (Kraska
et al., 2018; Maas et al., 2020; Liu et al., 2015; Hao et al.,
2020). Ouroboros is able to construct verified versions
of these applications.

Our experiments (§8) show that ouroboros accelerates the
training-verification loop by up to 7.0× (2.8× on average),
and the verified neural networks have comparable test set
accuracy to the traditional networks on all five applications.

2 Motivation and background
Neural networks for systems (NN4Sys) have recently at-
tracted a lot of attention: people propose a broad range of
applications, including databases, networked systems, and
operating systems. We list a few below.

Neural networks for systems. Kraska et al. (Kraska et al.,
2018) propose learned indexes for databases. They replace
classic database indexes (like B-Tree) with neural networks.
There is a line of work (Ding et al., 2020b;a; Tang et al.,
2020; Marcus et al., 2020a) to optimize the performance
of learned indexes and extend learned indexes to different
environments. In addition, neural networks have also been
used for database cardinality estimation (Liu et al., 2015;
Wang et al., 2020) and query optimization (Krishnan et al.,
2018; Marcus et al., 2019; 2020b). In networked systems,
people use neural networks for congestion control (Jay et al.,
2019), datacenter network traffic optimization (Chen et al.,
2018; Salman et al., 2018), resource allocation and schedul-
ing (Mao et al., 2016; Xu et al., 2017; Mao et al., 2019),

optimizing video streaming (Mao et al., 2017), and packet
classification (Liang et al., 2019). In operating systems,
there are proposals to use neural networks for predicting I/O
latency (Hao et al., 2020), page prefetching and job schedul-
ing (Qiu et al., 2021). Also, Zhang & Huang (2019) explore
the opportunities and challenges for building a “learned”
operating system.

However, neural networks are black boxes and may produce
unexpected results. For example, a learned scheduler may
schedule an invalid job; an NN-based database index may ex-
ceed its error bounds when querying non-existing keys. One
approach to verify the network behaviors is NN-verification.

Neural network verification. Neural network verification
provides formal guarantees of neural network input-output
properties: if an input satisfies a condition, then the corre-
sponding output satisfies another condition. The promise of
neural network verification is that given a trained neural net-
work and an input-output property, a verifier either accepts
(meaning the network satisfies this property) or rejects with
a counterexample that violates the property.

In this paper, we call the above input-output properties,
reachability specifications, which we define as follows. For-
mally, consider a neural network as a function f to which
inputs denote as x ∈ Dx and outputs are y ∈ Dy, where Dx

and Dy are the domain and range of f . Users can define a
reachability specification by providing a pair of domains
as 〈x ∈ X , y ∈ Y〉, where X ⊆ Dx and Y ⊆ Dy. And a
reachability specification is written as:

∀x, x ∈ X =⇒ y = f (x) ∈ Y

Neural network verification has been extensively studied.
Existing neural network verification methods can be broadly
categorized into reachability-based methods (Tran et al.,
2020; Wang et al., 2018d; Gehr et al., 2018) and optimization-
based methods (Lomuscio & Maganti, 2017; Tjeng et al.,
2017; Raghunathan et al., 2018; Ehlers, 2017). We refer
readers to Liu et al. (2019) for more verification techniques.

Ouroboros’s verification. In our implementation (§7),
ouroboros uses Neurify (Wang et al., 2018b). Although
ouroboros taiolors algorithms to support other specifica-
tions (such as probabilistic and monotonicity specifications,
§4), the core verification algorithm remains unchanged.

3 A case study: verified learned index
This section provides a case study of a verified learned index
to illustrate the workflow of training a verified neural network
for systems. The case study overviews (a) what specifications
look like and (b) how training-verification loop works.

The problem. Database learned index (Kraska et al., 2018)
is an attempt to use ML models to replace traditional index

data structure such as B-tree, where the underlying data are
sorted by keys. Inputs to learned indexes are database keys;
outputs are predicted data positions. Because the predictions
are not exact, the database needs to do a local search (e.g.,
binary search) to find the true position.

One challenge of using neural networks for indexing is that,
for the infinitely many non-existing keys (the keys that are not
in the training dataset), there is no guarantee about prediction
errors because the network hasn’t seen them. Therefore,
instead of neural networks, recent works on learned index use
piecewise linear models (Ferragina & Vinciguerra, 2020) or
other monotonic functions (Marcus et al., 2020c) as the ML
models. They work well for one-dimensional keys but face
difficulties in handling multi-dimensional keys. Instead, we
use a different approach: we use NN-verification to ensure
that the prediction errors are bounded for non-existing keys.

Specifications. The correctness property of a learned index
is as follows (Marcus et al., 2020a): for any given database
key, including non-existing keys, the learned index’s predic-
tion should be within ε slots away from its true position (ε
is a user-defined error bound). Note that because the un-
derlying data are sorted, non-existing keys also have their
true positions: between the keys immediately smaller and
immediately larger than them.

To define the specifications for an entire learned index, we
split the key space K according to existing keys, and assert
that for keys within a range (e.g., [K[i],K[i+1]]), a prediction
must not differ from the true position DB(key) beyond an
error bound ε. Formally, this specification reads as (f is the
network; DB is the ground truth; ε is the error bound):

∀key ∈[K[i],K[i + 1]],
f (key) ∈ [DB(K[i])− ε, DB(K[i + 1]) + ε]

(1)

Training-verification loop. As mentioned earlier (§1), the
training-verification loop iterates the training and the verifi-
cation procedures until the network passes the verification.
When networks fail verification, the verifier returns coun-
terexamples. Counterexamples of learned index are the keys
(say k ∈ [ki, kj]) whose network outputs exceed the error
bound (i.e., f (k) < DB(ki)−ε or f (k) > DB(kj)+ε). We as-
sign the correct labels to these counterexamples according to
specifications, add them to the training dataset, and start the
next round of training. This is an establish approach some-
times known as counterexample-guided learning (Dreossi
et al., 2018). Similar approaches have also been explored
elsewhere (Doyle et al., 2013; Solar-Lezama, 2013).

Data augmentation vs. regularization. In general, there
are two main approaches to incorporate the feedback from
verification: data augmentation (Pulina & Tacchella, 2011;
Tan et al., 2021) and regularization (Zhang et al., 2019a; Fan
& Li, 2021). Data augmentation guides learning by adding
data (i.e., counterexamples) to training datasets; whereas,

regularization appends a regularization term to the loss func-
tion (sometimes called robust loss) for penalizing cases that
fail verification.

Ouroboros uses data augmentation. There are two main
reasons why we choose data augmentation over regulariza-
tion for ouroboros. First, verified NN4Sys requires full
compliance with the specifications. For full compliance,
data augmentation offers better performance as it allows
us to fine-tune the percentage of training data generated
from the specifications. Second, NN4Sys typically uses
low-dimensional inputs (fewer than a dozen), which limits
the search space of counterexamples and enables us to find
high-quality spec-aware data.

To confirm our observation, we did an experiment using
data augmentation (described above) and regularization (de-
scribed below) to train the same monolithic network as a
learned index. The network is a four-layer fully-connected
network with 128-width each layer; the training data is a
synthetic database with 145K integer keys sampled from a
log-normal distribution. We implement our regularization
similar to CROWN-IBP (Zhang et al., 2019a) with a robust
loss term of (ybound − ŷ)2, where ybound is the upper/lower
bound computed by verification and ŷ is the true bounds (i.e.,
DB(key)± ε). The data augmentation produces the verified
learned index in 4 hours; and the regularization timed out
after 24 hours of training.

Challenges and opportunities. The learned index is one
example of NN4Sys. By studying multiple NN4Sys, we
find two challenges to train verified networks. One is about
specification capability and the second is about performance.

1. Diverse specifications: for many NN4Sys, the safety rules
require more expressive specifications than reachability
specifications. For example, cardinality estimation re-
quires monotonicity, and bloom filter requires probabilis-
tic specifications.

2. Full compliance requires efficient learning from specifica-
tions: it is inefficient to learn from few counterexamples
each round, and run full verification each round. We do
not have to use expensive verification if networks have su-
perficial flaws; and we could augment the training dataset
more efficiently by sampling the counterexamples accord-
ing to specifications.

We propose techniques to address these two challenges in
section 4 and 5, respectively.

4 Verifying common specifications for
computer systems

As mentioned earlier (§1), today’s neural network verifica-
tion techniques support a limited set of specifications. In this
section, we introduce how ouroboros supports common

counterexample

verified-safe
space

verified-
unsafe space

input space

iterative
refinement

verified-safe% > 95%

Figure 2: Probabilistic specification verification. The outermost
squares represent the entire input space; each inner smaller rect-
angles represents an area that has been verified: blueish means
verified safe space and redish means verified unsafe space. The
dots are input data points that fail the specifications (i.e., counterex-
amples). In this example, the probabilistic specification threshold
is 95%.

specifications that cover most neural networks for systems
that we study (§6, Figure 5).

Common specifications. We study the existing neural net-
works for systems (Kraska et al., 2018; Maas et al., 2020; Dai
& Shrivastava, 2019; Byun & Lim, 2021; Liu et al., 2015;
Wang et al., 2020; Hao et al., 2020) and distill three cate-
gories of specifications: reachability specifications, proba-
bilistic specifications, and monotonicity specifications. Ad-
mittedly, these specifications are not comprehensive. Never-
theless, they cover a wide range of applications (§6). Our
future work is to discover more useful specification cate-
gories and draw a line of what can and cannot be expressed
by these specification categories.

Both probabilistic and monotonicity specifications have been
studied before. Weng et al. (2019) and Berrada et al. (2021)
provide verifiable probabilistic guarantees for neural net-
works; Liu et al. (2020) and others (Sivaraman et al., 2020;
Chen et al., 2021) explore monotonicity of neural networks.
In ouroboros, we use iterative refinements (Wang et al.,
2018c) to verify probabilistic and monotonicity specifica-
tions, which we will elaborate in section 4.1 and 4.2.

4.1 Verifying probabilistic specifications

Probabilistic specification describes a neural network obey-
ing rules with some given probability. It is useful when
either the guarantees hold probabilistically (for example, in
probabilistic data structures) or users want to give some lee-
way to neural networks (namely, allowing false predictions).
For example, bloom filters have probabilistic specifications
(see details in §6). This is a category of specifications that
prior neural network verification methods have little support.
We define probabilistic specifications below.

Given a network f and its input and output x and y, users can
define a probabilistic specification by specifying a reacha-
bility specification 〈X , Y〉 (defined in §2) and a probability

1: procedure verifyProb(f, X, Y, prob):
2: specs← [〈X, Y〉]
3: Ssafe ← 0; Sunsafe ← 0
4: // space(·) calculates the space of the given input
5: while Ssafe/space(X) < prob:
6: X, Y ← specs.pop()
7: if verify(f , X, Y) = accept: // run Neurify
8: Ssafe += space(X)
9: else: // failing verification

10: if space(X) < min space:
11: Sunsafe += space(X)
12: if Sunsafe > (1− prob): return reject
13: else:
14: specs += divide(X, Y) // line 34
15: return accept
16:
17: procedure isMono(gradlb, gradub, Y dim, is monoinc)
18: if is monoinc:
19: return gradlb[Y dim] ≥ 0
20: else:
21: return gradub[Y dim] ≤ 0

22: procedure VerifyMono(f , X, Y dim, is monoinc)
23: gradlb, gradub ← CalcGradientBounds(f , X)
24: if isMono(gradlb, gradub, Y dim, is monoinc): // line 17
25: return accept
26:
27: // if not monotonic, then refine the spec
28: if X.ub− X.lb < min threshold: return reject
29: 〈X1, 〉, 〈X2, 〉 ← divide(X, NULL) // line 34
30: return VerifyMono(f , X1, Y dim, is monoinc) and
31: VerifyMono(f , X2, Y dim, is monoinc)
32:
33:
34: procedure divide(X, Y)
35: // find the dimension that has the largest gap
36: dim len, dim id ← findmax(X.upbound − X.lowbound)
37: // divide the dimension into two
38: mid ← lb[dim id] + dim len/2
39: X1← X.clone(); X1.ub[dim id]← mid
40: X2← X.clone(); X2.lb[dim id]← mid
41: return [〈X1, Y〉, 〈X2, Y〉]
42:

Figure 3: verifyProb and verifyMono describe how ouroboros verifies probabilistic specifications and monotonicity specifications,
respectively. f represents the neural network; X is the input constraint (e.g., a hyperrectangle); Y is the output constraint (e.g., a
hyperrectangle); prob represents the probability that the specification holds; Y dim is the monotonic dimension to verify; is monoinc
represents if verifying monotonic increasing (when it is True) or decreasing (when False). We omit counterexample generating and
sampling here for simplicity.

P indicating how likely the reachability specification holds.
The probabilistic specification is written as:

∀x, x ∈ X =⇒ Pr(y ∈ Y | y = f (x)) > P (2)

Ouroboros’s probabilistic specification verification reduces
to proving the following statement: in the network input
space, the fraction of the “area” in which the specification
holds over the entire space is greater than the threshold
P . By default, ouroboros assumes the input distribution
is uniformly random, when calculating probability. Users
can also specify other input distributions by providing user-
defined sampling functions; then, ouroboros will compute
the weighted volume based on the cumulated distribution.

To verify probabilistic specifications, ouroboros iteratively
refines the space that hasn’t been verified safe (called un-
verified space) as Wang et al. (2018c) does. The differ-
ence is Wang et al. (2018c) stops when finding a counterex-
ample, while ouroboros continues and keeps track of the
space verified safe (called verified-safe space) and its volume.
Ouroboros terminates when either the area of verified-safe
space is greater than the threshold (an accept) or the area
of unverified space is larger than the complementary per-
centage of the threshold (a reject). Figure 2 demonstrates
an example of verifying a probabilistic specification with
P = 95%. Figure 3 depicts the verification algorithm.

Our probabilistic specifications have different guarantees
compared to prior work: Berrada et al. (2021) provide prob-
abilistic guarantees under uncertainties, whereas we provide
deterministic guarantees by verifying the percentage of the
input set that satisfies the property. While our current method

works for low-dimensional inputs, it does scale well with
higher input dimensionality. To address this issue, we plan
to incorporate the probabilistic guarantees in ouroboros in
the near future.

4.2 Verifying monotonicity

Previous specifications focus on single neural network
inference—specifying the relationship between one input
and its corresponding output. Sometimes systems require
properties that among multiple inferences, for example,
monotonicity. Monotonicity is a widely used correctness
property in systems. An example is database cardinality esti-
mation (§6), a procedure to estimate the number of database
rows returned by a SQL statement. Users want that if two
SQL statements query the same database and one queries a
subset of the other, then the neural network output (that is,
the number of returned rows) of the subset query should be
smaller than the other’s. We define monotonicity specifica-
tions as follows.

Given a network f , two inputs x0 and x1 in some input domain
X , a monotonically increasing specification reads as:

∀x0, x1 ∈ X , ∀i, x0[i] ≥ x1[i] =⇒ f (x0)[j] ≥ f (x1)[j] (3)

where j is an output dimension provided by users.

To verify the monotonicity of a neural network, ouroboros
computes the lower and upper bounds of the network gra-
dients with respect to inputs. We use the same gradient
computing method as ReluVal (Wang et al., 2018c). Relu-
Val uses gradient bounds for heuristic iterative refinement,

while we use gradient bounds to verify monotonicity. Specif-
ically, for a given input space, (i) if the lower bound is greater
than 0, then ouroboros can safely conclude that the net-
work is monotonically increasing; (ii) if the upper bound
is less than 0, then the network is monotonically decreas-
ing; (iii) if the lower bound is less than 0 while the upper
bound is greater than 0, ouroboros uses iterative refinement
(the same procedure in verifying probabilistic specifications,
§4.1). Namely, ouroboros divides the input space into
smaller subspaces to reduce over-approximation until the
network is monotonic on the input space. Note that iterative
refinement will eventually terminate because the number of
activation functions in a neural network is finite, meaning
the number of non-linear “parts” is finite, hence the number
of refinements is finite. Figure 3 describes the algorithm to
verify monotonicity specifications.

Our approach differs from prior monotonicity verifica-
tions (Liu et al., 2020; Sivaraman et al., 2020; Chen et al.,
2021) in two major ways. First, ouroboros does not modify
networks, whereas some prior work needs certain network
architectures. Second, ouroboros uses a reachability ap-
proach to calculate gradients instead of using SMT solvers
or optimization approaches for better scalability.

5 Spec-aware learning
The naive training-verification loop is expensive and ineffi-
cient: it trains models blindly without incorporating spec-
ifications. To accelerate the training-verification loop, we
introduce spec-aware learning that co-designs training and
verification by using two main techniques:

1. Spec-aware data: ouroboros generates spec-aware data
from specifications and verification results, then adds the
data to the next round of training to guide learning.

2. Early rejection: early rejection is a shortcut for the net-
works that fail known hard specifications: ouroboros
spot-checks these specifications on the networks and (if
fail) reject them before verification.

Spec-aware learning overview. Figure 4 depicts spec-aware
learning and ouroboros’s workflow.

A trainer trains a neural network. When the trainer finishes
training, it sends the network to a spec-aware checker. The
checker spot-checks if the network fails any hard specifi-
cations from prior rounds. If so, the checker early rejects;
otherwise, the network is sent to a verifier.

The verifier conducts NN-verification. If the network passes
the verification, the loop terminates and we get a verified
network; if the network fails, the verifier produces coun-
terexamples. Based on the counterexamples, a spec-aware
generator develops spec-aware data that will be added to the
training data of the next round.

fail pass
counter-

examplesspec-aware data verified NN

candidate NN
+ spec

early
rejection

spec-aware
checker

spec-aware
generator

verifiertrainer

NN

Figure 4: Ouroboros spec-aware learning overview.

Generating spec-aware data. We observe that the vanilla
training-verification loop, doesn’t use specifications effi-
ciently for two main reasons: (1) the “coverage” of counterex-
amples is limited. The verifier will stop when it finds one
counterexample, which represents one way that the neural
network violates specifications. The network however might
fail specifications in many ways—think of a multiple dimen-
sional input space; the network can violate specifications
in many directions. (2) sometimes, the counterexamples
are “outliers” and it requires multiple rounds to reveal the
true specification boundary. In particular, it is beneficial for
training to have both positive and negative cases across the
specification boundary.

As a response to our two observations, ouroboros gener-
ates spec-aware data using two approaches. First, unlike
traditional verifiers that find a counterexample and stop,
ouroboros customizes the verification algorithm so that
it returns multiple counterexamples sampled from differ-
ent “locations” of the explored space. Second, ouroboros
further samples around the counterexamples according to
the specifications to create high-quality spec-aware data for
training. Ouroboros has a component called spec-aware
data generator. It uses the counterexamples and the specifica-
tions to create new samples around the specification decision
boundary. For example, a learned index may violate specifi-
cations by predicting a key (say an integer) far away from its
true position. The generator will sample around the failed
keys and add them to the training dataset. Similar ideas have
been explored in other scenarios (Kong et al., 2018).

A challenge: counterexamples without labels. In some appli-
cations, ouroboros finds the counterexamples but doesn’t
know their corresponding true labels, so that these coun-
terexamples cannot be directly added to the training data.
As a toy example, if we require that a network f and its input
x satisfy that x < 10 =⇒ f (x) < 10. We may find a
counterexample: x = 5, f (x) = 20. However, ouroboros
does not know how to correct the output 20, that is, what f (x)
should be. To address this challenge, we add a specification
aware loss. Following the above example, ouroboros adds
a loss L = max(f (x) − 10, 0). With the loss, even if the
true labels are missing, ouroboros can still optimize the
network towards the specification satisfaction direction.

Application System module and functionality Specification category and description

Database learned in-
dex (Kraska et al.,
2018)

database index: index is a data structure to accel-
erate data retrieval which maps database keys to
the corresponding data positions on the underly-
ing storage (inputs: database keys; outputs: data
positions).

reachability specification: for all keys, the output data
positions must be within ε slots away from their true po-
sitions where the ε is an allowable error bound. Notice
that the database knows the true position for each key
(the ground truth is known a priori).

Learning-based
memory manager
(Maas et al., 2020)

memory manager: LLAMA (Maas et al., 2020)
uses a neural network to predicts lifetime classes
of memory objects by their calling contexts to
mitigate heap fragmentation. (inputs: the stack
trace of malloc; outputs: predicted memory ob-
ject lifetime).

reachability specification: programmers know the ex-
pected behaviors of memory objects, hence can classify
objects to different lifetime classes. The specifications
specify that the predicted lifetime for memory objects
should fall into the expected lifetime class or adjacent
classes.

Cardinality estima-
tion (Liu et al., 2015)

database query optimization: cardinality estima-
tion predicts the number of rows returned by a
query, which will significantly affect the choice
of query optimization policies. (inputs: SQL
query; outputs: estimated number of returned
rows).

monotonicity specification: given two SQL statements,
one (say SQL1) queries a subset of the other (say SQL2).
The specifications dictate that the outputs of the cardi-
nality estimation for SQL1 must be smaller or equal to
SQL2’s output.

Storage latency
predictor (Hao et al.,
2020)

OS I/O module: modern flash storage has com-
plicated internals, hence have poor predictability
which harms the overall latency. LinnOS (Hao
et al., 2020) uses a neural network to predict the
I/O latency. (input: I/O queue status and recent
history; output: binary prediction, fast I/O or
slow I/O).

monotonicity specification: for two I/O requests (say
IOR1 and IOR2), if the I/O queue when issuing IOR1
is shorter than IOR2 and other parameters of the two
requests are the same, the specifications require that
IOR1 should be predicted to be either faster than or in
the same category to IOR2.

Learned bloom fil-
ter (Kraska et al.,
2018)

bloom filter: a bloom filter is a probabilistic data
structure that has been widely used in many sys-
tems. Bloom filters test whether an element (for
example, a string) is in a pre-defined set. Bloom
filters allow false positives—it may say ”yes” to
a not-in-the-set element. (inputs: an element;
outputs: whether the element exists in the set)

probabilistic specification: in the case of bloom filters,
the set is known ahead of time. The specifications spec-
ify that for all elements in the set, the bloom filter should
return true in probability X; whereas for non-existing
elements, the bloom filter should return false in proba-
bility Y . Both X and Y are parameters defined by users.

Figure 5: Applications of neural networks for systems. Note that the descriptions are high-level (see neural network details
in §7). The inputs/outputs are described in their original meanings, and neural networks need first encode then use them.

Early rejection. Neural network verification is expensive.
Ideally, we only use verification whenever we have to. How-
ever, we observe that, often, neural networks go to the verifier
with superficial flaws. For example, neural networks haven’t
been sufficiently trained to learn some spec-aware data from
the last round. To address this problem, we introduce early
rejection. Early rejection allows ouroboros to skip expen-
sive verifications by spot-checking several data points that
are supposed to be “hard to learn”: our current implementa-
tion uses counterexamples from prior rounds of verification.
Similarly, prior work (Anderson et al., 2019) uses optimiza-
tion approaches to find “adversarial examples”, but this is
too expensive in our setup. Our near-future work is to study
how to efficiently construct a data set that maximizes the
rejecting probability.

An optimization: fine-tuning + early rejection. When net-
works satisfy almost all specifications, ouroboros fine-
tunes (Bengio, 2012; Yosinski et al., 2014) them by freezing
the beginning multiple layers and only updating weights in

the latter layers during training. Fine-tuning and early rejec-
tion provide a quick and efficient feedback loop for neural
networks to learn those difficult specifications.

6 Put it all together—applications
People have proposed many applications to use neural net-
works in computer systems, including databases learned
index (Kraska et al., 2018), memory allocator (Maas et al.,
2020), and OS I/O management (Hao et al., 2020), to name
a few. All of these applications use traditional neural net-
works. To evaluate ouroboros in practice, we reproduce
five applications, design specifications for them, and train
verified neural networks to replace the original traditional
networks. The five applications are: learned database in-
dex (Kraska et al., 2018), learned memory manager (Maas
et al., 2020), NN-based cardinality estimation (Liu et al.,
2015), LinnOS (Hao et al., 2020) (an SSD latency predic-
tor in OS), and learned bloom filter (Kraska et al., 2018).
Figure 5 describes these applications in detail.

Ouroboros component LOC written/changed
neural network trainer 150 lines of Python
neural network verifier 400 lines of Julia
training-verification loop 800 lines of Python
five applications 700 lines of Python

Figure 6: Components of ouroboros implementation.

Of course, there are many other applications. We choose
applications based on three main metrics. First, we pick
applications from a diverse set of system areas. For ex-
ample, learned indexes and cardinality estimation are from
databases, memory managers are for programming language
runtime, storage latency predictors are used in OS kernel,
and bloom filters have been applied in a broad range of sys-
tems. Second, we intentionally diversify the applications’
specifications to cover all three specification categories. We
skip some promising applications because their specifica-
tions are similar to others. Finally, we prioritize the appli-
cations that haven’t been studied by prior neural network
verification work (Eliyahu et al., 2021; Dethise et al., 2021).

Note that we simplify some networks compared to the origi-
nal proposal. We elaborate the modification details in the
implementation section (§7). The simplification is because
the current ouroboros supports only feedforward neural
networks, which is a limitation. It is our near-future work to
add more neural network operations and architectures (e.g.,
recurrent neural networks).

7 Implementation
Implementation overview. Figure 6 lists ouroboros’s
components. Ouroboros uses PyTorch v1.8.1 to im-
plement the trainer, and uses the verification toolbox
NeuralVerification.jl (ver, 2021; Liu et al., 2019) to
implement the verifier. We use Python to implement the
training-verification loop module which includes the spec-
aware checker (conducting early rejection) and the spec-
aware generator (generating spec-aware data).

Verifier. We use Neurify (Wang et al., 2018b) as our base
verification algorithm and extend it with (1) returning mul-
tiple counterexamples in each verification, (2) incremental
specification, and (3) memorizing verification history for
each specification. The verifier needs to keep track of the
status of specifications because the order of verifying spec-
ifications matters: ouroboros’s verifier prioritizes failed
specifications, instead of blindly verifying all the specifica-
tions in the given order. This is because previously verified
safe specifications are likely to be safe. The verifier revis-
its the verified safe specifications when the network passes
other specifications.

Computing gradients. People have intensively studied how
to calculate bounds for the gradients (Laurel et al., 2022; Jor-

Apps Network configurations

LearnedIndex FC: 1-1000-1 (stage 1)
FC: 1-100-1 (stage 2)

MemManager FC: 13-300-300-4
CardEsti FC: 4-500-1
LatPredictor FC: 9-300-300-1
BloomFilter FC: 2-50-50-1

Figure 7: Network architectures. “FC” means fully-connected
feed-forward neural networks. The number after “FC” indicates
the number of neurons in each layer. Layers are separated by
dashes. LearnedIndex has two stages of networks, as proposed by
the original paper (Kraska et al., 2018).

dan & Dimakis, 2020; Zhang et al., 2019b). In our implemen-
tation, we compute the symbolic gradient bound leveraging
the symbolic representation of Neurify (Wang et al., 2018b).
The symbolic gradient bound is an over-approximation and
can be refined when the input set gets split.

Applications. We also rewrite the five applications in Fig-
ure 5 using Python and PyTorch. We have reimplemented
all five applications (Figure 5) using feed-forward neural
networks. The network configurations are listed in Figure 7.

Specifications. Figure 5 describes the high-level specifica-
tions. For LearnedIndex, we use an error bound ε = 1000.
MemManager produces outputs indicating objects’ lifetimes,
which are categorized into five different groups from short-
est to longest. Our specification mandates that predictions
should not differ by more than one category. With regard
to CardEsti, we require SQL queries for two columns (the
page len and page latest in table page of the Wikipedia;
see §8) to be monotonic. As for LatPredictor, we require
the predicted IO latency (the output) to be monotonic with
respect to the IO queue length (one dimension of the input).
Finally, for BloomFilter, we require the false positive rate to
be ≤ 2.5%.

8 Experimental evaluation
In this section, we answer three questions:

• How long does it take ouroboros to train a verified neural
network, and how does that compare to baselines?

• Compared with traditional neural networks, how do veri-
fied neural networks perform?

• How does the performance of verified neural networks
compare to that of traditional data structures?

Benchmarks and datasets. We use the five applications in
Figure 5 as benchmarks in our experiments. Their networks
are specified in Figure 7. Here are their training datasets:

• Learned index (LearnedIndex): we use the synthetic
dataset used by the Kraska et al. (2018): we sample 120K
integer keys from a lognormal distribution.

• Learning-based memory manager (MemManager): we

Apps normal vanilla ouroboros speedup
LearnedIndex 34 47 47 1.0×
MemManager 5 175 25 7.0×
CardEsti 19 114 43 2.7×
LatPredictor 3 90 47 1.9×
BloomFilter 1 TO 474 >1.3×

Figure 8: Running time (in seconds) for training traditional
and verified neural networks. The “speedup” column indicates
ouroboros’s speedup versus the vanilla loop. “TO” means time
out (600sec).

instrument a memory allocator which records the stack
trace of each malloc and tracks the life time of each
allocated memory object. We then run a key-value store
Redis (red, 2021) with this memory allocator to collect its
memory traces. Our final data has 60K allocation entries.

• Cardinality estimation (CardEsti): we download the
Wikipedia database and rebuild one of its tables, page.
We further generate a set of SQL statements that queries
various ranges of columns page latest and page len
and their number of returned rows. This dataset collects
100K queries and their results.

• Storage latency predictor (LatPredictor): we use Lin-
nOS (lin, 2021) SSD latency collector to collect 60K
SSD I/O requests on an AWS t3.xlarge machine.

• Learned bloom filter (BloomFilter): we use a dataset,
Crimes in Boston (bos, 2021), from Kaggle. We use
the learned bloom filter to tell if a location (latitude and
longitude) had a crime. There are 300K crime locations
in this dataset.

Setup. For the experiments below, we run ouroboros in a
machine with an AMD EPYC 7773X 64-Core Processor, 256
GB RAM, and a NVIDIA RTX A5000 GPU. The machine
uses Ubuntu 20.04. The software we use is PyTorch v1.8.1
and Julia v1.8.5.

8.1 Training verified neural networks with ouroboros

Baselines. In this section, we consider training networks
with two baselines:

• Normal training: running traditional training without ver-
ification. The outputs will be traditional neural networks
that do not fully comply with specifications.

• Vanilla loop: the training-verification loop proposed by
NeVer (Pulina & Tacchella, 2011) which adds counterex-
amples to the next round of training.

Network training time. We run ouroboros and two base-
lines on all five applications, and record their end-to-end
training time from starting the training job to getting the
final network. Figure 8 shows the results.

In this experiment, normal training is faster than the vanilla
loop and ouroboros because it doesn’t perform verifica-

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

accuracy
training
verification

0 100 200 300 400 500
Time (s)

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

accuracy
training
verification

Figure 9: The training and verification switches and the model
accuracy changes for CardEsti (top) and BloomFilter (bottom).

tions at all. Ouroboros runs faster than the vanilla loop in
most cases because of spec-aware learning (§5). The only
exception is LearnedIndex, for which Ouroboros has no
improvement. This is because the specifications are easy to
satisfy and the networks are verified safe before spec-aware
learning takes effect (see also ablation study later, Figure 10).

Decomposition of ouroboros’s execution. To under-
stand how training and verification interact, we break
ouroboros’s execution time into training and verification
phases. We also record the model accuracy changes as
ouroboros switches between training and verification. Fig-
ure 9 shows the results for CardEsti and BloomFilter.

For CardEsti, there are two training phases and two veri-
fication phases. The neural network knows nothing in the
beginning, hence it requires a long time to learn from train-
ing data. The first verification is long because the neural
network is not robust and therefore hard to verify. In the
second phase, with the help of spec-aware data, the model
quickly learns the desired specification and passed the veri-
fication.

The pattern of BloomFilter is different. The neural network
quickly learns the training data. However, the initial network
doesn’t capture the logic of specifications. The specifica-
tions require a precies boundary produced by the neural
network, which is difficult to learn but easy to verify. There-
fore, BloomFilter spends most of the time on training.

Ablation study. To understand how the two techniques—
spec-aware data and early rejection—- contribute to
ouroboros’s performance, we conduct an ablation study.
We evaluate all five applications with four variants: (1)
normal training (without verification), (2) vanilla loop, (3)
vanilla loop with spec-aware data, and (4) vanilla loop with
spec-aware data and early rejection (ouroboros). Figure 10
shows the results.

From Figure 10, we see that techniques contribute differently

LearnedIndex MemManager CardEsti LatPredictor BloomFilter
0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

34

5

19

3 1

47 175 114 90 T/O47

14

41

47
521

47

25

43

53 474

Normal (training)
Vanilla (training)
Vanilla (verification)
Spec. data (training)
Spec. data (verification)
Spec. data + EJ (training)
Spec. data + EJ (verification)

Figure 10: An ablation study of how ouroboros’s techniques contirbute to perfromance. “Normal” represents normal training (without
verification); “Vanilla” reprsents the vanilla loop baseline; “Spec. data” represents spec-aware data; “E.J.” represents early rejection. All
bars have two parts: the bottom part represents the training time, and the top part indicates verification time.

App Network Test dataset Spec dataset

MemManager classic net 86.0% 23.2%
verified net 87.6% 100%

CardEsti classic net 88.9% 1.6%
verified net 88.0% 100%

LatPredictor classic net 96.1% 1.9%
verified net 97.7% 100%

BloomFilter classic net 99.9% 4.7%
verified net 99.5% 78.6%

Figure 11: Model accurarcy for verified and classic networks.

to different applications. For LearnedIndex, no techniques
improve training because the specifications are relatively
easy to satisfy. We looked into the training and found that
the stage1 model (the largest network of LearnedIndex) sat-
isfies its specifications after the first round of training, and
ouroboros techniques are not involved at all. So, train-
ing performance is almost the same for all variants. For
MemManager and CardEsti, spec-aware data plays a major
role in accelerating learning. For early rejection, it doesn’t
help much in the first four applications because verifying
reachability specifications and monotonicity specifications
are relatively fast. But, early rejection contributes mean-
ingfully for the BloomFilter given verifying probabilistic
specifications is challenging and computationally expensive.

8.2 Verified neural networks vs. traditional networks

To understand if ouroboros sacrifices model accuracy for
safety, we compare both the verified neural networks and
traditional neural networks for four applications. (We ex-
clude the LearnedIndex because Kraska et al. (2018)’s origi-
nal design requires to replace the neural networks that fail
specifications with B-trees, which is different from other
applications in this experiment.) There are two categories
of test sets. One is generated using the traditional approach
that we divide the data collected from the four applications
into 80:20, and use the 20% data as normal test sets. The
other test set comes from specifications. We collect the
counterexamples generated by the verification phases and
use them as specification test sets. We evaluate the model

accuracy of certified and traditional networks on the two test
sets. Figure 11 shows the results.

We see that verified neural networks have comparable per-
formance for normal test sets, and outperform traditional
networks on specification test sets. Note that the spec dataset
accuracy of BloomFilter is not 100% because this application
uses probabilistic specifications. Moreover, the accuracy in
the spec dataset is pessimistic because the spec dataset con-
tains counterexamples that sit between decision boundaries,
which are hard to predict right.

8.3 Execution performance of verified neural networks

In this section, we answer the question how classic and veri-
fied neural networks work in systems compared with exist-
ing data structures. We experiment with three applications:
LearnedIndex, BloomFilter, and LatPredictor.

Baselines and setup. For LearnedIndex, we choose
RMI (Kraska et al., 2018) and B-Tree as baselines. We
use the original RMI implementation in C++ from RMI au-
thors (sos, 2023), and a C++ implementation of B-Trees (btr,
2023). The dataset is from a standard learned index bench-
mark, SOSD (Marcus et al., 2020a); we downsampled its
face dataset to 150K. For BloomFilter, our baseline is the
scalable bloom filter (Almeida et al., 2007), the highest-
stared bloom filter implementation on GitHub. The dataset
is the Crimes in Boston (bos, 2021) from Kaggle. For Lat-
Predictor, we port the original LinnOS (Hao et al., 2020)
from TensorFlow to PyTorch and generate two variants:
LinnOS-binary is the original model that does binary clas-
sification (fast IO or slow IO). We simply LinnOS’ inputs to
nine dimensions (was 31) to align with the training data.

Metrics. For all models, we measure the throughputs (re-
quests per second), latency (serving one single request), and
their memory consumptions (size in KB). For throughputs,
all neural networks—including ours and baselines that use
neural networks—use batching and run on GPUs; others
run on CPUs without batching. For latencies, all models
serve a single request with no batching. Neural networks
run on GPUs; others run on CPUs. For LearnedIndex, we

application model throughput latency (µs or ns) size (KB) avg/max err FP% accuracy

LearnedIndex
verified NN4Sys 9.8M 351 µs 47 245/906 – –
classic NN4Sys 9.8M 377 µs 47 239/905 – –
RMI (49KB) 24.5M 41 ns 49 0.7/8 – –
RMI (6KB) 20.4M 49 ns 6 1.2/20 – –
B-Tree 5.1M 195 ns 337 – – –

BloomFilter
verified NN4Sys 147.1K 85 µs 1965 – 2.2% –
classic NN4Sys 148.1K 84 µs 1965 – 56.2% –
Bloom Filter (1%) 333.0K 3 µs 382 – 1.0% –
Bloom Filter (2%) 345.5K 3 µs 325 – 2.0% –

LatPredictor verified NN4Sys 172.9K 77 µs 366 – – 97.7%
classic NN4Sys 173.2K 81 µs 366 – – 96.3%
LinnOS-binary 172.5K 76 µs 12 – – 96.1%

Figure 12: Execution performance of baselines and verified neural networks. In throughputs, “M” is used to denote a million, and “K” for
a thousand. “avg/max err” represent the average and max error that learned indexes predict. “FP%” means false positive rates for bloom
filters. “accuracy” indicates the accuracy of IO latency predictions.

measure the average and max errors which represent the in-
accuracy of model’s prediction (we do not include the local
search procedure for RMIs and our models). For BloomFil-
ter, we show the false positive rates for baselines and our
models. For LatPredictor, we show the accuracy results: for
LinnOS-binary, this is the accuracy of binary classification;
for our model, this is the accuracy of predicting IO latency.

Results. Figure 12 depicts the results. For LearnedIn-
dex, there is no significant difference between verified
NN4Sys and unverified NN4Sys for the same reason we
mentioned in 8.1. RMIs have 2.5× higher throughput than
verified NN4Sys. Latency-wise, RMIs and B-Trees are much
faster; this is due to GPU-CPU data transfer and unopti-
mized NN4Sys: the latency of NN4Sys can be improved
by model quantization, pruning, and model compilation.
A deeper reason why RMIs work well is that this dataset
is a one-dimension to one-dimension mapping, and linear
models work really well on 1D-inputs. We expect neural
networks work better in terms of model accuracy for high-
dimensional inputs (like strings). For BloomFilter, veri-
fied NN4Sys has comparable performance with traditional
bloom filters in throughputs, with the similar false positive
rate, which is much lower compared with the unverified
NN4Sys. We expect to have better performance when us-
ing inference-oriented hardware accelerators (like neural
processor units). For LatPredictor, unverified NN4Sys and
verified NN4Sys both have better prediction accuracy com-
pared with LinnOS-binary because LinnOS-binary is tiny
for fast inference (the original implementation complies the
TensorFlow model into CPU-friendly implementation; we
do not port this process.) Because the verified neural net-
works have been trained to be monotonic, which reflects the
common sense, it performs better than unverified NN4Sys.

9 Related work
Training-verification loop. The “loop” idea is a reminis-
cence of the feedback loop in control theory (Doyle et al.,
2013). NeVer (Pulina & Tacchella, 2011) first introduces

the idea of training-verification loop in the context of neural
network verification. Later, other systems (Dvijotham et al.,
2018; Tan et al., 2021; Yang et al., 2021) explore similar
ideas to construct neural networks with provable guarantees.
Ouroboros is the first system designed for training verified
neural networks for systems, with supports to probabilistic
specifications and monotonicity specifications.
Neural network verification for systems. There are many
attempts to replace system components with neural net-
works (Kraska et al., 2018; Maas et al., 2020; Dai & Shri-
vastava, 2019; Byun & Lim, 2021; Liu et al., 2015; Wang
et al., 2020; Hao et al., 2020). One challenge they face is that
neural networks are black boxes and do not strictly follow
safety properties. Several tools (Kazak et al., 2019; Eliyahu
et al., 2021; Dethise et al., 2021) address this challenge by
using neural network verification to check whether the net-
works used in computer systems are safe. Compare with
these tools, ouroboros uses the same techniques but for
a different purpose. Ouroboros aims at constructing net-
works that satisfy specifications, instead of only checking if
networks satisfy the specifications.

10 Conclusion
Verified neural networks are networks that are proven to
comply with specifications. They are useful for scenarios
that have strong safety requirements, for example, critical
computer systems. Ouroboros is a system that enables
users to train verified neural networks. With ouroboros,
people can finally trust their neural networks.

Acknowledgement
We thank our shepherd Junfeng Yang and the anonymous
reviewers of MLSys23 for their feedback which substan-
tially improved this paper. This work was supported by NSF
CAREER Awards #2237295, #2144489, and #2239351.

References
Crimes in Boston. https://www.kaggle.com/
AnalyzeBoston/crimes-in-boston, 2021.

LinnOS Artifact. https://
www.chameleoncloud.org/experiment/share/15?s=
409ab137f20e4cd38ae3dd4e0d4bfa7c, 2021.

Redis: The Real-time Data Platform. https://redis.com/,
2021.

Neuralverification.jl. https://github.com/sisl/
NeuralVerification.jl, 2021.

STX B+ Tree C++ Template Classes. https://
panthema.net/2007/stx-btree/, 2023.

Search on Sorted Data Benchmark. https://github.com/
learnedsystems/SOSD, 2023.

Almeida, P. S., Baquero, C., Preguiça, N., and Hutchison, D.
Scalable bloom filters. Information Processing Letters,
101(6):255–261, 2007.

Anderson, G., Pailoor, S., Dillig, I., and Chaudhuri, S. Op-
timization and abstraction: a synergistic approach for
analyzing neural network robustness. In Proceedings
of the 40th ACM SIGPLAN conference on programming
language design and implementation, pp. 731–744, 2019.

Bengio, Y. Deep learning of representations for unsuper-
vised and transfer learning. In Proceedings of ICML work-
shop on unsupervised and transfer learning, pp. 17–36.
JMLR Workshop and Conference Proceedings, 2012.

Berrada, L., Dathathri, S., Dvijotham, K., Stanforth, R.,
Bunel, R. R., Uesato, J., Gowal, S., and Kumar, M. P.
Make sure you’re unsure: A framework for verifying prob-
abilistic specifications. Advances in Neural Information
Processing Systems, 2021.

Bertsimas, D., Brown, D. B., and Caramanis, C. Theory and
applications of robust optimization. SIAM review, 53(3):
464–501, 2011.

Byun, H. and Lim, H. Learned fbf: Learning-based func-
tional bloom filter for key-value storage. IEEE Transac-
tions on Computers, 2021.

Chen, L., Lingys, J., Chen, K., and Liu, F. Auto: Scal-
ing deep reinforcement learning for datacenter-scale auto-
matic traffic optimization. 2018.

Chen, Y., Wang, S., Qin, Y., Liao, X., Jana, S., and Wag-
ner, D. Learning security classifiers with verified global
robustness properties. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 477–494, 2021.

Dai, Z. and Shrivastava, A. Adaptive learned bloom fil-
ter (ada-bf): Efficient utilization of the classifier. arXiv
preprint arXiv:1910.09131, 2019.

Dethise, A., Canini, M., and Narodytska, N. Analyzing
Learning-Based Networked Systems with Formal Verifi-
cation. In Proceedings of INFOCOM’21, 2021.

Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y.,
Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D.,
et al. Alex: an updatable adaptive learned index. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020a.

Ding, J., Nathan, V., Alizadeh, M., and Kraska, T. Tsunami:
A learned multi-dimensional index for correlated data
and skewed workloads. arXiv preprint arXiv:2006.13282,
2020b.

Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. Feed-
back control theory. Courier Corporation, 2013.

Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-
Vincentelli, A., and Seshia, S. A. Counterexample-guided
data augmentation. arXiv preprint arXiv:1805.06962,
2018.

Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R.,
O’Donoghue, B., Uesato, J., and Kohli, P. Training
verified learners with learned verifiers. arXiv preprint
arXiv:1805.10265, 2018.

Ehlers, R. Formal verification of piece-wise linear feed-
forward neural networks. In International Symposium on
Automated Technology for Verification and Analysis, pp.
269–286. Springer, 2017.

Eliyahu, T., Kazak, Y., Katz, G., and Schapira, M. Verifying
learning-augmented systems. 2021.

Fan, J. and Li, W. Adversarial training and provable ro-
bustness: A tale of two objectives. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 7367–7376, 2021.

Ferragina, P. and Vinciguerra, G. The pgm-index: a fully-
dynamic compressed learned index with provable worst-
case bounds. Proceedings of the VLDB Endowment, 13
(8):1162–1175, 2020.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. Ai2: Safety and robustness
certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy
(SP), pp. 3–18. IEEE, 2018.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin,
C., Uesato, J., Arandjelovic, R., Mann, T., and Kohli,

https://www.kaggle.com/AnalyzeBoston/crimes-in-boston
https://www.kaggle.com/AnalyzeBoston/crimes-in-boston
https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c
https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c
https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c
https://redis.com/
https://github.com/sisl/NeuralVerification.jl
https://github.com/sisl/NeuralVerification.jl
https://panthema.net/2007/stx-btree/
https://panthema.net/2007/stx-btree/
https://github.com/learnedsystems/SOSD
https://github.com/learnedsystems/SOSD

P. On the effectiveness of interval bound propagation
for training verifiably robust models. arXiv preprint
arXiv:1810.12715, 2018.

Hao, M., Toksoz, L., Li, N., Halim, E. E., Hoffmann, H., and
Gunawi, H. S. Linnos: Predictability on unpredictable
flash storage with a light neural network. 2020.

Hashemi, M., Swersky, K., Smith, J., Ayers, G., Litz, H.,
Chang, J., Kozyrakis, C., and Ranganathan, P. Learning
memory access patterns. In International Conference on
Machine Learning, 2018.

Jay, N., Rotman, N., Godfrey, B., Schapira, M., and Tamar,
A. A deep reinforcement learning perspective on inter-
net congestion control. In International Conference on
Machine Learning. PMLR, 2019.

Jordan, M. and Dimakis, A. G. Exactly computing the local
lipschitz constant of relu networks. Advances in Neural
Information Processing Systems, 33:7344–7353, 2020.

Katz, G. Augmenting deep neural networks with scenario-
based guard rules. In International Conference on Model-
Driven Engineering and Software Development. Springer,
2020.

Kazak, Y., Barrett, C., Katz, G., and Schapira, M. Verify-
ing deep-rl-driven systems. In Proceedings of the 2019
Workshop on Network Meets AI & ML, 2019.

Kong, S., Solar-Lezama, A., and Gao, S. Delta-decision
procedures for exists-forall problems over the reals. In
Computer Aided Verification: 30th International Confer-
ence, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part II 30, 2018.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis,
N. The case for learned index structures. 2018.

Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J., and
Stoica, I. Learning to optimize join queries with deep
reinforcement learning. arXiv preprint arXiv:1808.03196,
2018.

Laurel, J., Yang, R., Singh, G., and Misailovic, S. A dual
number abstraction for static analysis of clarke jacobians.
Proceedings of the ACM on Programming Languages, 6
(POPL):1–30, 2022.

Liang, E., Zhu, H., Jin, X., and Stoica, I. Neural packet
classification. 2019.

Liu, C., Arnon, T., Lazarus, C., Barrett, C., and Kochender-
fer, M. J. Algorithms for verifying deep neural networks.
arXiv:1903.06758, 2019.

Liu, H., Xu, M., Yu, Z., Corvinelli, V., and Zuzarte, C. Car-
dinality estimation using neural networks. In Proceedings
of the 25th Annual International Conference on Computer
Science and Software Engineering, pp. 53–59, 2015.

Liu, X., Han, X., Zhang, N., and Liu, Q. Certified mono-
tonic neural networks. Advances in Neural Information
Processing Systems, 33:15427–15438, 2020.

Lomuscio, A. and Maganti, L. An approach to reachability
analysis for feed-forward relu neural networks. arXiv
preprint arXiv:1706.07351, 2017.

Maas, M., Andersen, D. G., Isard, M., Javanmard, M. M.,
McKinley, K. S., and Raffel, C. Learning-based memory
allocation for c++ server workloads. 2020.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. Re-
source management with deep reinforcement learning. In
Proceedings of the 15th ACM workshop on hot topics in
networks, pp. 50–56, 2016.

Mao, H., Netravali, R., and Alizadeh, M. Neural adaptive
video streaming with pensieve. pp. 197–210, 2017.

Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng,
Z., and Alizadeh, M. Learning scheduling algorithms for
data processing clusters. 2019.

Marcus, R., Negi, P., Mao, H., Zhang, C., Alizadeh,
M., Kraska, T., Papaemmanouil, O., and Tatbul, N.
Neo: A learned query optimizer. arXiv preprint
arXiv:1904.03711, 2019.

Marcus, R., Kipf, A., van Renen, A., Stoian, M., Misra, S.,
Kemper, A., Neumann, T., and Kraska, T. Benchmarking
learned indexes. arXiv preprint arXiv:2006.12804, 2020a.

Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M., and
Kraska, T. Bao: Learning to steer query optimizers. arXiv
preprint arXiv:2004.03814, 2020b.

Marcus, R., Zhang, E., and Kraska, T. Cdfshop: Exploring
and optimizing learned index structures. In Proceedings
of the 2020 ACM SIGMOD International Conference on
Management of Data, pp. 2789–2792, 2020c.

Müller, M. N., Eckert, F., Fischer, M., and Vechev, M. Certi-
fied training: Small boxes are all you need. arXiv preprint
arXiv:2210.04871, 2022.

Pulina, L. and Tacchella, A. Never: a tool for artificial
neural networks verification. Annals of Mathematics and
Artificial Intelligence, 62(3):403–425, 2011.

Qiu, Y., Liu, H., Anderson, T., Lin, Y., and Chen, A. Toward
reconfigurable kernel datapaths with learned optimiza-
tions. 2021.

Raghunathan, A., Steinhardt, J., and Liang, P. Semidefi-
nite relaxations for certifying robustness to adversarial
examples. arXiv preprint arXiv:1811.01057, 2018.

Salman, S., Streiffer, C., Chen, H., Benson, T., and Kadav,
A. Deepconf: Automating data center network topologies
management with machine learning. In Proceedings of
the 2018 Workshop on Network Meets AI & ML, 2018.

Shi, Z., Wang, Y., Zhang, H., Yi, J., and Hsieh, C.-J. Fast
certified robust training with short warmup. Advances in
Neural Information Processing Systems, 34:18335–18349,
2021.

Sivaraman, A., Farnadi, G., Millstein, T., and Van den
Broeck, G. Counterexample-guided learning of mono-
tonic neural networks. Advances in Neural Information
Processing Systems, 33:11936–11948, 2020.

Solar-Lezama, A. Program sketching. International Journal
on Software Tools for Technology Transfer, 15:475–495,
2013.

Tan, C., Zhu, Y., and Guo, C. Building verified neural net-
works with specifications for systems. In Proceedings of
the 12th ACM SIGOPS Asia-Pacific Workshop on Systems,
2021.

Tang, C., Wang, Y., Dong, Z., Hu, G., Wang, Z., Wang,
M., and Chen, H. Xindex: a scalable learned index for
multicore data storage. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pp. 308–320, 2020.

Tjeng, V., Xiao, K., and Tedrake, R. Evaluating robustness of
neural networks with mixed integer programming. arXiv
preprint arXiv:1711.07356, 2017.

Tran, H.-D., Yang, X., Lopez, D. M., Musau, P., Nguyen,
L. V., Xiang, W., Bak, S., and Johnson, T. T. Nnv: The
neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. In Inter-
national Conference on Computer Aided Verification, pp.
3–17. Springer, 2020.

Wang, H., Yang, J., Lee, H.-S., and Han, S. Learning to
design circuits. arXiv preprint arXiv:1812.02734, 2018a.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Efficient formal safety analysis of neural networks. arXiv
preprint arXiv:1809.08098, 2018b.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. For-
mal security analysis of neural networks using symbolic
intervals. 2018c.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Efficient formal safety analysis of neural networks. arXiv
preprint arXiv:1809.08098, 2018d.

Wang, X., Qu, C., Wu, W., Wang, J., and Zhou, Q. Are we
ready for learned cardinality estimation? arXiv preprint
arXiv:2012.06743, 2020.

Weng, L., Chen, P.-Y., Nguyen, L., Squillante, M., Boopathy,
A., Oseledets, I., and Daniel, L. Proven: Verifying ro-
bustness of neural networks with a probabilistic approach.
In International Conference on Machine Learning, pp.
6727–6736. PMLR, 2019.

Xu, Z., Wang, Y., Tang, J., Wang, J., and Gursoy, M. C.
A deep reinforcement learning based framework for
power-efficient resource allocation in cloud rans. In
2017 IEEE International Conference on Communications
(ICC). IEEE, 2017.

Yang, X., Yamaguchi, T., Tran, H.-D., Hoxha, B., Johnson,
T. T., and Prokhorov, D. Neural network repair with
reachability analysis. arXiv preprint arXiv:2108.04214,
2021.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? arXiv
preprint arXiv:1411.1792, 2014.

Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R., Li,
B., Boning, D., and Hsieh, C.-J. Towards stable and effi-
cient training of verifiably robust neural networks. arXiv
preprint arXiv:1906.06316, 2019a.

Zhang, H., Zhang, P., and Hsieh, C.-J. Recurjac: An effi-
cient recursive algorithm for bounding jacobian matrix of
neural networks and its applications. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
pp. 5757–5764, 2019b.

Zhang, Y. and Huang, Y. ”Learned” Operating Systems.
ACM SIGOPS Operating Systems Review, 2019.

A Artifact Appendix
A.1 Abstract

Ouroboros is a system to train verified neural networks
for computer systems. Ouroboros have several parts: The
training part trains models given the normal data and coun-
terexample data. The verification part verifies models with
given specifications and return counterexamples, which con-
tains a modified version of NeuralVerification.jl package.
The training verification loop part connects training and ver-
ification, and guides the selection of counterexamples and
counterexample-guided training.

A.2 Artifact check-list (meta-information)
• Algorithm: Neural Network Verification
• Run-time environment: Ubuntu 20.04

• Experiment hardware: AMD EPYC 7773X 64-Core Processor,
NVIDIA GA102GL [RTX A5000]

• Software dependencies: Python3.7+, Julia1.8.5, pytorch
• disk space required: 5 GB
• setup time: 30 mins
• experiment running time: 1-5 hours
• Code/Data licenses: MIT license
• DOI: 10.5281/zenodo.7788500

A.3 Description

A.3.1 How delivered
Ouroboros’s code and experiment datasets can be found at https:
//github.com/Khoury-srg/Ouroboros.

A.3.2 Hardware dependencies
Ouroboros does not require specific hardware to run. But with
GPUs, the performance of ouroboros’s training phase will be
accelerated.

A.3.3 Software dependencies
This program relies on the following software: julia1.8.5,
python3.7+, pytorch.

A.3.4 Data sets
The datasets are contained in our repository.

A.4 Installation
Install miniconda and julia. Git clone the repository.

#!/bin/bash
wget https://repo.anaconda.com/miniconda/Miniconda3-

↪→ py37_23.1.0-1-Linux-x86_64.sh
bash Miniconda3-py37_23.1.0-1-Linux-x86_64.sh
wget https://julialang-s3.julialang.org/bin/linux/

↪→ x64/1.8/julia-1.8.5-linux-x86_64.tar.gz
tar zxvf julia-1.8.5-linux-x86_64.tar.gz
git clone git@github.com:Khoury-srg/Ouroboros.git

Add the following line to ˜/.bashrc.

export PATH="$PATH:/path/to/<Julia␣directory>/bin"

Configure julia and install NeuralVerification from our repo.

source ˜/.bashrc
julia

Inside julia

using Pkg
Pkg.develop(path="/path/to/ouroboros/

↪→ NeuralVerification.jl")
Pkg.add("LazySets")
Exit by CTRL+D

Setup python environment

conda create --name ouroboros python==3.7
conda activate ouroboros
pip3 install torch torchvision torchaudio pandas

↪→ onnx onnxruntime matplotlib annoy julia
python

Inside python

import julia
julia.install()

A.5 Experiment workflow
The following command runs all experiments.

cd /path/to/ouroboros/src
python run_exp.py

To draw all figures and generate the table in our paper:

cd /path/to/ouroboros/src
python plot_figures.py
python generate_table.py

A.6 Evaluation and expected result
All the models and outputs are stored in /ouroboros/results. Deliv-
erable figures are stored in /ouroboros/imgs. Numerical results for
the table are printed in the terminal.

For figure 9, we expect the reproduced accuracy (y-axis) to remain
similar, but the time (x-axis) may be different.

For figure 10, we expect the reproduced results to have the same
relative performance as in the figure. But the concrete running time
may be different.

For table 11, we expect all the numbers to remain similar.

https://github.com/Khoury-srg/Ouroboros
https://github.com/Khoury-srg/Ouroboros

