Predicting GPU Failures With High Precision Under Deep
Learning Workloads

Zhichao Li
ByteDance Inc.

Heting Liu
ByteDance Inc.

Cheng Tan

Northeastern University

Rongqiu Yang
ByteDance Inc.

Guohong Cao Zherui Liu Chuanxiong Guo
The Pennsylvania State ByteDance Inc. ByteDance Inc.
University

ABSTRACT

Graphics processing units (GPUs) are the de facto standard for
processing deep learning (DL) tasks. In large-scale GPU clusters,
GPU failures are inevitable and may cause severe consequences.
For example, GPU failures disrupt distributed training, crash infer-
ence services, and result in service level agreement violations. In
this paper, we study the problem of predicting GPU failures using
machine learning (ML) models to mitigate their damages.

We train prediction models on a four-month production dataset
with 350 million entries at ByteDance. We observe that classic pre-
diction models (GBDT, MLP, LSTM, and 1D-CNN) do not perform
well—they are inaccurate for predictions and unstable over time. We
propose several techniques to improve the precision and stability of
predictions, including parallel and cascade model-ensemble mecha-
nisms and a sliding training method. We evaluate the performance
of our proposed techniques. The results show that our proposed
techniques improve the prediction precision from 46.3% to 85.4%
on production workloads.

CCS CONCEPTS

« Computing methodologies — Machine learning.

KEYWORDS

Machine Learning, GPU Failure Prediction, Deep Learning Work-
loads

ACM Reference Format:

Heting Liu, Zhichao Li, Cheng Tan, Rongqiu Yang, Guohong Cao, Zherui Liu,
and Chuanxiong Guo. 2023. Predicting GPU Failures With High Precision
Under Deep Learning Workloads. In The 16th ACM International Systems
and Storage Conference (SYSTOR °23), June 5-7, 2023, Haifa, Israel. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3579370.3594777

1 INTRODUCTION

In a large-scale deep learning cluster, GPU failures are both in-
evitable and devastating. For example, a failure on one GPU can
disrupt a long-running distributed training job, causing multiple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR °23, June 5-7, 2023, Haifa, Israel

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9962-3/23/06...$15.00
https://doi.org/10.1145/3579370.3594777

hours of work loss (sometimes even tens of hours) on multiple ma-
chines. Furthermore, GPU failures may crash production inference
services, increase responding latency significantly, causes service
level agreement (SLA) violations, and result in revenue loss.

Since it is unlikely to build failure-free GPUs, GPU failure predic-
tion provides one way to mitigate the damages caused by failures.
For example, if GPU clusters can predict failures, they can migrate
jobs on suspicious GPUs to other machines and start proactive
maintenance to these GPUs. Notice that predictions are not de-
signed to replace traditional diagnosis (for example, NVIDIA DCGM).
Predictions should serve as “hints” instead of “final decisions”.

Though promising, GPU failure prediction under DL workloads
has not been well-studied. The most relevant works are analyzing
GPU failures on Titan supercomputer [10, 22-24, 32], a high perfor-
mance computing (HPC) system. These studies are inspiring, but
they provide limited guidance to predict today’s GPU failures in
large-scale DL clusters for the following three reasons. First, DL
workloads are considerably different from HPC workloads. For DL
workloads, GPUs are the main computing power, whereas HPC
workloads heavily involve CPUs. Compared with the failure data
collected in HPC [32], GPU failures in DL workloads differ in ap-
pearing frequency, dominant types, arrival time distribution, etc.
Second, the GPU type being studied [10, 22-24, 32]-NVIDIA K20X
GPU—is a decade old (launched in 2012), which may have different
characteristics with modern GPUs. Third, none of the prior works
comprehensively studied various prediction models.

In this paper, we study GPU failure prediction under production-
scale GPU clusters at ByteDance, focusing on the unique charac-
teristics of modern GPUs under DL workloads. As a starting point,
we explore various classic models such as long short-term memory
(LSTM) and one-dimensional convolutional neural network (1D-
CNN), and evaluate their performances for GPU failure prediction.
We observe that predictions of these models are both inaccurate
(the precision is low) and unstable (the precision decreases over
time). And, there are two major technical challenges (§3.2): O the
precision of every single model is inadequate; and (2) GPU failure
patterns drift over time.

For challenge (1), we hypothesize that the low precision is due
to the complex and diverse GPU failure patterns, and also the lim-
ited learning ability of single models. Therefore, we propose two
model-ensemble mechanisms (i.e., cascade and parallel) that lever-
age domain knowledge to make combined predictions. The cascade
model-ensemble mechanism filters out 95% “healthy” instances,
and then combine with the latter model to make predictions. The

https://doi.org/10.1145/3579370.3594777
https://doi.org/10.1145/3579370.3594777

SYSTOR 23, June 5-7, 2023, Haifa, Israel

parallel model-ensemble mechanism uses different models to verify
the prediction results.

For challenge (2), we observe that the pattern of GPU failures
changes over time (sometimes known as data drift [28]), making
the trained model less effective. To adapt the model to the changing
patterns, we propose a sliding training technique. Specifically, we
retrain the model periodically, using only recently collected data.
We further observe that the time length of the sliding training
set affects the model performance, and yet there is no one-to-all
optimal time length of the sliding training set. Therefore, we also
propose to adjust the time length of the sliding training set, in a
dynamic manner, to better train the model.

The contributions of this paper are as follows.

o This paper is the first to study prediction models of GPU
failures under deep learning workloads in production scale.

e We conduct a study of four classic models (§3.1) on a 4-month
production dataset and identify two major challenges (§3).

o To tackle the two challenges, we propose several techniques,
including parallel and cascade model-ensemble mechanisms
(§4), and a sliding training method (§5).

o We implement the GPU failure prediction as a service (§6)
and evaluate it on production data from ByteDance (§7).

We evaluate the model performances on a four-month dataset
including about 350 million entries. The precision of the best base-
line model (i.e., 1D-CNN) is 46.3%. The model-ensemble mechanism
is able to improve the precision by up to 11.9% (§7.1). The sliding
training technique improves the stability of the model, and also im-
proves the average precision by another 21.8% (§7.3). The training
set length-adjustment technique can further improve the precision
by up to 5.4% (§7.4). With all techniques combined, we achieve the
highest precision of 85.4%.

Goals and non-goals. This paper studies the problem of predict-
ing GPU failures in a near future. We aim at high precision—the
predicted faulty GPUs will likely fail in the near future. But we do
not expect to discover all possibly faulty GPUs. That is, overlooking
GPU failures is acceptable (we elaborate this choice in §9). Also,
predictions should be used as auxiliary information (for example,
to help make scheduling decisions or to start regular inspections
earlier); we do not expect to conduct aggressive actions, like retiring
GPUs, based on predictions. Finally, our ethos is pragmatic. We
prefer simplicity and explainability.

2 SETUP AND PROBLEM STATEMENT

In this section, we introduce GPU deployments at ByteDance, elab-
orate the GPU data we collect, clarify our problem statement, and
how we generate the time-series dataset for model training.

2.1 Setup

GPU deployment and workload. An important factor that in-
fluences GPU failures is how GPUs are deployed and used. In this
section, we briefly introduce the GPU setup and their workloads at
ByteDance. ByteDance has multiple datacenters worldwide with
tens of thousands of GPUs. GPUs are organized in an 8-card-per-
machine setup. Machines are connected through RDMA-enabled
datacenter networks. We collect data from GPUs serving DL model

Heting Liu, Zhichao Li, Cheng Tan, Rongqiu Yang, Guohong Cao, Zherui Liu, and Chuanxiong Guo

training and inference. The training jobs are large-scale, some of
which (for example, training GPT-3) require a collaboration of al-
most a thousand GPUs. Our inference services are also massive, as
we need to process billions of model inference requests per day.

In this paper, we sample a subset of ByteDance’s GPUs, and
we focus on three mainstream GPU types: V100, P4, and T4. The
data are collected from tens of thousands of running GPUs across
multiple datacenters in Asia. In the rest of this paper, we will refer
these data (all of them) as raw GPU dataset, or the dataset, which
we describe in detail later on. The GPUs and machines are chosen
at random.

Raw GPU Dataset. We collect both static and dynamic GPU at-
tributes. Table 1 lists the description of each attribute. Most param-
eters are self-explanatory. The “failure status”—which is the ground
truth of whether a GPU fails—is collected from failure reports in
production. Its value is binary: “1” means the GPU is faulty, and “0”
means healthy.

2.2 Problem statement

This paper studies the problem of predicting GPU failures (defined
below) in a near future. We will train a machine learning model
whose input is a GPU trace from recent history, and the output is a
binary: “1” means the GPU will fail in the future, and “0” means the
GPU will stay healthy. The prediction models will be trained on a
time-series dataset and should be able to predict whether a given
GPU will fail in a near future (like in 24 hours), with high precision.

GPU failures. The GPU failures may come from different types.
For example, some are caused by the GPU driver and can be fixed
by upgrading the driver version and rebooting, while some are
because of hardware issues and require replacement. In this paper,
GPU failure is defined from a user’s perspective, that is the errors
are classified based on their externally observable consequences, re-
gardless of their internal causes. This observation-based definition
aligns with our goal, that is, to predict failures which affect services
and applications. Note that in this paper we do not distinguish fail-
ure types because the consequences of all the predicted types are
the same (i.e., interrupting tasks and services), and all failure types
follow the same repairing procedure (i.e., rebooting, examining,
and replacing). Therefore, the prediction is a binary classification
problem.

Time-series dataset. After collecting the raw GPU dataset (§2.1),
we generate a time-series dataset to train the prediction model.
Formally, let D denote the time-series dataset. D = {(X, yi)}f.il,
where N is the number of instances. X’ denotes a time series, with
the size of I X m, where [is the number of time steps in one instance,
and m is the dimension of the feature vector. Let p denote the
prediction length. ¢’ is an indicator variable with y? = 1 meaning
that the GPU will fail within time length p, and y* = 0 meaning the
GPU will not fail within that time period. We elaborate how we
construct the time-series dataset in the next section.

Aiming at high precision. In this paper, we aim to predict GPU
failures with high precision. That is, the predicted faulty GPUs
are likely to fail in a near future. This is crucial in production
because otherwise, it might trigger a round of (possibly manual)

Predicting GPU Failures With High Precision Under Deep Learning Workloads

SYSTOR 23, June 5-7, 2023, Haifa, Israel

Dataset

Parameters

Failure Prediction

Type Range

Source DType Usage

dynamic data

temperature int (20,90) (in °C) nvidia-smi float feature
power consumption int [0,400) (in W) nvidia-smi float feature
GPU SM utilization int [0, 100] nvidia-smi float feature
GPU mem utilization int 0,100] nvidia-smi float feature
machine uptime int - /proc/ float feature
failure status bit - failure report binary label
static data

machine rack name string - cmdb categorical feature
GPU type string {*V100”, “T4”, “P4”} cmdb categorical feature
driver version string {“418”, “4507} cmdb categorical feature
expiration date date - machine management sys float feature

Table 1: GPU and machine parameters in the GPU dataset and their usage in our prediction model. Note that “Type” in the
“Dataset” is the data type from underlying sources (e.g., nvidia-smi), whereas “DType” in the “Failure Prediction” is the type we
use for ML model training. Other than data types, we convert “failure status” into binary to represent if a GPU is faulty, and we

cut “machine rack name” to datacenter names for training.

Decision GPU Failure Decision GPU Failure
Negative Pointt vent Positive Fointt Event
Flns anccq |i Instance il
Time Time

Observation

| icti
- Predicti
Observation P Window (¢ ~L,¢] Window (t,¢ % p]

K . Prediction
Window (¢t —[,t] Window (t,t + p]

(a) Negative Instance (b) Positive Instance

Figure 1: Examples of time-series instances generation. (a) A
negative instance is generated if the GPU will not fail within
time length p. (b) A positive instance is generated if the GPU
will fail within time length p.

examination to some healthy GPUs, which lowers the operators’
confidence to our system.

2.3 Constructing time-series datasets

Next, we elaborate how we convert the raw GPU dataset to the
time-series dataset D.

Deduplicating failure status. We aggregate the entries of each
GPU by GPU serial number. The entries of each GPU are sorted by
time. Once a GPU fails, the monitoring agents (e.g., nvidia-smi
and dmesg) will keep reporting errors. The GPU’s failure status in
the dataset will always be “1” until it is repaired. But we only care
the first failure point. This is because a failure predictor aims at
predicting whether GPUs will fail in the near future, which is in
fact predicting the first failure point in history. Thus, we filter out
the redundant entries by removing entries with failure status being
“1” following the first reported failure.

Segmenting the raw dataset into time-series instances. One
data point in our final time-series dataset D will be a time-series
instance. Each time-series instance consists of / number of consecu-
tive entries, corresponding to [time steps. Suppose the timestamp
of the last entry in X’ is ¢, the label y* of the instance depends
on the failure status of the following entries during time (¢, ¢ + p].
If the failure status is “0” for all the entries during time (¢, ¢ + p],
then the label of this time series is set to be 0, meaning that the
corresponding GPU will not fail within time (¢, ¢ + p]. If there is
any entry with failure status “1” during (¢, ¢t + p], the label is set to

be 1, meaning that the GPU will fail within that time period. Both [
and p are parameters.

To generate the time-series instances, we use a segment ap-
proach. The idea is to split the raw data (i.e., a long time series for
each GPU) into different non-overlapping time-series instances. As
illustrated in Figure 1, for each GPU, an observation window of
length [(including I time steps) starts from the initial time point.
We first check the failure status of all entries in the window. If there
is any entry with failure status being “1”, we move the observa-
tion window right until there is no failure status being “1” in the
window. Then the data in the current observation window forms
a time-series instance, where each entry corresponds to one row
of X!. Suppose the timestamp of the last entry in the window is ¢,
we further check the failure status of entries between timestamp ¢
and t + p: if there are any entries with failure status “1”, the label
yi of the current time-series instance is 1, otherwise the label is
0. After that, we move the observation window to the entry right
after the prediction window, and repeat the steps above to generate
the following instances.

Augmenting positive instances (failure cases). One challenge
we met is that the number of positive instances (failure cases) pro-
duced by the above segmenting approach is small, making training
less effective. To augment the positive instances, we use a sliding-
window approach: after one time-series instance is generated, the
observation window slides slide_step (slide_step <) entries to
generate the next time-series instance. One failure event gener-
ates multiple positive time-series instances this way. The number
of the positive instances is improved by 60 more times compared
to that of the segmented approach, when [= 18, p = 144, and
slide_step = 10.

3 FAILED ATTEMPTS: CLASSIC MODELS

In this section, we introduce the classic models we explore and the
main challenges we observe from the results.

3.1 Classic models

As a starting point, we build some classic ML models and evaluate
their performances on GPU failure prediction. Our problem can be

SYSTOR 23, June 5-7, 2023, Haifa, Israel

1.0

=%= MLP
== GBDT

—8— ID-CNN
0.91 LSTM

£0.8
80.7]
0.6/
£0.5/
0.41
0.3

p 2% Preci

T

1 2 3 4 5 6

Day
Figure 2: Precision@K of GBDT, MLP, LSTM and 1D-CNN
(K=2% x N) of each day. The y-axis starts at 0.3.

seen as a binary classification problem, that is to classify a time
series as “healthy” or “faulty”. We implement four widely-used
models for binary classification: Gradient Boosting Decision Tree
(GBDT), Multi-layer Perception (MLP), Long Short-Term Memory
(LSTM), and 1D Convolutional Neural Network Model (1D-CNN).

GBDT [17]: an ensemble prediction model which combines multiple
weak models. At each iteration, a new decision is trained with
respect to the gradient of the loss achieved by the previous decision
trees. Our GBDT model ensembles 200 decision trees.

MLP [21]: a class of feedforward artificial neural networks designed
to approximate any continuous function and solve problems that
are not linearly separable. We build an MLP with two hidden layers.

LSTM [13, 38]: an artificial recurrent neural network architecture
capable of learning order dependence in sequence prediction prob-
lems. We build an LSTM model with the hidden state size of 10.

1D-CNN [35, 37]: a CNN whose kernel moves in one direction.
1D-CNN is widely-used on time series data. We build a 1D-CNN
with four convolutional layers and two fully-connected layers.

3.2 Training, preliminary results, and
challenges

Feature engineering. To train these classic models, we encode the
collected features into fixed-length numerical feature vectors. As
shown in Table 1, the type of features we collected includes binary,
categorical, and float.

e For categorical features such as “gpu type” and “gpu version”,
we use one-hot encoding. Each category is first converted to an
integer n, indicating that it belongs to the n’ h category. Then we
encode it into a one-hot vector, whose dimension is the number
of categories. The n'” element of the one-hot vector is 1, and
other elements are 0.

o For float features, the feature value is discretized into Ny cfes
buckets and converted to a bucket index. Such conversion re-
duces the influences of extreme values for model training.

Training and preliminary results. We train the above models
on a 15-day training dataset from our time-series dataset D (§2)
and test the performances of these models on a test dataset of the

Heting Liu, Zhichao Li, Cheng Tan, Rongqiu Yang, Guohong Cao, Zherui Liu, and Chuanxiong Guo

following 6 days. This is a simulation of getting 15 days of history
data to predict failures in the coming 6 days.

The model output for an instance (in the test dataset) is a score,
denoted as p? (for the i’ h instance), which is a float number that
indicates the probability that the instance belongs to the failure
class. We focus on the instances with the top K predicted scores
since they are the most likely positive (failure class) instances (see
also our discussion in §9). Specifically, we rank all instances by their
predicted scores ' from high to low, then we evaluate the perfor-
mances of models with Precision@XK [15] which corresponds to
the ratio of true positive instances among the total top K instances
(ranked by scores). In the rest of this paper, we will use precision@K
and precision interchangeably.

Figure 2 shows the daily precision@K of the above models. Here
we set K=2% x N, where N is the number of total instances, to focus
on the most likely positive instances (we justify why 2% in §9). From
the figure we observe that the 1D-CNN model achieves the highest
precision@K among the four models. However, the precision@K
of 1D-CNN is still far from ideal, which is 0.663 on average. The
average precision of GBDT, MLP, and LSTM are worse, which are
0.579, 0.608, 0.474, respectively. An interesting phenomenon is that
LSTM, which is supposed to be the most powerful model among
the four, performs the worst. Our hypothesis is that LSTM is not
well trained (see more discussion in §9).

Moreover, we can see a clear trend that the precision of all the
models decreases as time moving forward from day one to day six
(in the test dataset). The precision decreases by 28.6%—-43.0% from
the first day to the sixth day for the four models.

Challenges. From the above results, we see two challenges: (1
the model precision is low. This is because the GPU failure pattern
is complex and diverse, and the prediction ability of every sin-
gle classic model is inadequate. (2) the failure patterns drift. The
GPU failure patterns change over time, thus the model precision
decreases over time. To tackle challenge (1), we propose two model-
ensemble mechanisms in Section 4 to improve the precision. For
challenge (2), we adopt a sliding training technique in Section 5 to
improve the stability of predictions over time.

4 MODEL-ENSEMBLE TECHNIQUE

The pattern of GPU failures is complex and diverse, and there-
fore, one single classic model may not capture the pattern well.
To improve the precision of GPU failure prediction, we adopt two
model-ensemble mechanisms, namely parallel ensemble and cas-
cade ensemble, to combine multiple models in different manners for
better precision@K.

Ensemble learning or ensemble models [4, 7, 11] have been ex-
tensively studied by multiple communities in many scenarios. We
do not contribute to ensemble approaches. Indeed, the architectures
of our ensemble models are not new. The novelty, however, is in
how we tailor ensembles for a new problem—predicting GPU fail-
ures (§2.2). In particular, this problem aims at improving precision,
instead of accuracy. This leads to (i) our parallel model takes the
joint of basic models, instead of average score; and (ii) the cascade
model filters out high-probability negative instances to improve
precision. And, our contributions are applying tailored ensemble

Predicting GPU Failures With High Precision Under Deep Learning Workloads

Instances with
Top-k Score

4 1D-CNN

~

Copy A

Test
Set

Copy B

Predicted
Positive

4 GBDT Instances
Copy C é}b = 3 = . | _J [E

Iterations
N——

Figure 3: The structure of the parallel ensemble. The fig-
ure shows the inference procedure when using the parallel
ensemble. Each instance is fed into the three models respec-
tively, and the instance ranked top K by three models is
predicted to be the “failure” class.

approaches in a new context (i.e., GPU failure prediction) and con-
firming the effectiveness of the two approaches by evaluating them
on large-scale production data. In addition, the two approaches that
we use are simple but effective, which is preferred in production
systems.

Parallel ensemble. Figure 3 shows the inference procedure of
the parallel ensemble. We use three different models to make joint
decisions. Specifically, the instances in the test set are fed into the
1D-CNN, MLP, and GBDT respectively, and each model selects a set
of instances ranked top K according to its predicted scores. Then
the instances in the intersection of the three sets are classified as the
“failure” class. We experiment with different combinations of models
and found these three worked the best together. Our hypothesis
is that the three models are vastly different in architectures, so
that they can provide diverse “perspectives” for the same instance.
Meanwhile, they also capture some common patterns of the true
positives such that they agree upon the obvious positive instances.

Cascade ensemble. Our second ensemble approach is a cascade
mechanism, as shown in Figure 4. In this ensemble model, the first
model is tuned to be high-recall and low-precision; whereas the
second model is low-recall and high-precision. The idea is to first
filter out instances that are most likely to be healthy by the first
model, and then pinpoint the faulty instances by the second model.
We choose the 1D-CNN to be the first model and the MLP model
to be the second because these two models have the highest two
precisions in Figure 2 and they together worked the best in our
experiments.

The first model (1D-CNN) should aim at filtering out the negative
instances (healthy GPUs), instead of focusing on predicting the
faulty ones. To achieve this, we add a weight w! for each instance
to control the penalty of incorrectly classifying the instance. We set
the weight w' for the positive instances to be higher than that of the
negative instances, so that the punishment of classifying positive
instances to be negative is high. Let g (-) denote the 1D-CNN model

SYSTOR 23, June 5-7, 2023, Haifa, Israel

with parameters 6, then the loss function of the 1D-CNN model is
1 N

loss = — " [w'(go(X) = y)I%. 1

0ss = 2, [w'(ge(X) —y) (1)

By minimizing Eq.(1), the predicted scores of positive instances
tend to be high.

When getting the predictions from the first model, we sort the
instances by their predicted scores, and select the top kj ranked
instances. Notice that we expect to filter out those instances that
are very unlikely to be faulty by then. Then, we select the top k1
instances (where k; is a reasonably large number), which should
include most positive instances and some of the negative instances,
and feed them into the second model (MLP) for further classification.
Finally, the top ko ranked instances predicted by the MLP model
are classified as the faulty ones.

5 SLIDING TRAINING TECHNIQUE

In Section 3, we observe that the precision of GPU failure prediction
decreases over time, probably due to the fact that the GPU failure
pattern changes over time. This is sometimes called data shift or
data drift [1]. Data drift of GPU failures could be caused by many
factors, including workload shift, software and GPU driver upgrade,
humidity and temperature change in the environment.

To cope with the failure pattern drift problem, we use continuous
training [14] by sliding the training dataset to the recently collected
data and retraining the model periodically, so that a recent model
can capture the current failure patterns. In this process, there are
two hyperparameters for training: one is how often we retrain
models, denoted as T"€¢74in (for example, every 3 days); and the
other is the length of history that we use for training, denoted as
LIr4in (for example, training on the past 9-day data). Figure 5 shows
an illustrative example of T"¢/"%" and L!"4" The model is retained
at every ith retrain period at i X Tretrain wherei = 0,1,2,---,
and the training set is generated from the data collected during
[i x Tretrain _ pirain ; pretrain] And the next retrain period
[i x Tretrain (j 4 1) x Tretrain] js called a test window. The model
is updated to match the recent data before the test window.

Fluctuated pattern drift. Beyond the failure pattern drift, we also
observe that the speed of the pattern drift varies. That is, sometimes
the failure patterns are relatively stable, whereas at other times
patterns change quickly and significantly. Thus, choosing L!"4i"
is important because different values of L/"*" produce different
effects at different time. To confirm that different L*"#" have differ-
ent performance, we trained three models with L7%" to be 9 days,
12 days, and 15 days for each test window, and test their perfor-
mances. Table 2 and Table 3 show two examples of the performance
of the parallel model at different test windows. From the tables we
see that for test window of day 1 to 3 (these are three consecutive
days randomly selected from D), setting LI"%" to be 9 days has the
highest precision@XK, while for test window of day 4 to 6 (these
are three consecutive days following day 3 in D), setting L " to
be 12 days has the highest precision@K. The results verify that at
different time, the optimal L*"*" may be different.

Choosing hyperparameter L"%", Generally, longer L™ in-
cludes more data, and thus model is more likely to learn the mapping

SYSTOR 23, June 5-7, 2023, Haifa, Israel

Instances with
Test Top-k; Score

Set 1D-CNN

Heting Liu, Zhichao Li, Cheng Tan, Rongqiu Yang, Guohong Cao, Zherui Liu, and Chuanxiong Guo

. » .

Instances with .

MLP\ "Top-k, Sc‘gre Predicted
Positive

| Instances

*I_I:H

Figure 4: The structure of the cascade mechanism. The figure shows the inference procedure when using the cascade mechanism.
The instances in the test set are first fed into the 1D-CNN model to filter out some negative instances, and then the latter MLP

model further classifies the rest instances.

Retrain
Model

Tretrain Tretruin

Tretrain

Time

Training Set Length L{7en

Figure 5: The procedure of sliding training. T"""%" denotes
the period of model retraining, and L?"%" denotes the length
of the time span of training set. The model is retrained every
TTetrain ysing the data collected in the previous L/"%" days.

Lfrain Precision@K Recall@K Accuracy

15 days 77.5% 12.9% 89.9%
12 days 79.6% 10.3% 89.7%
9 days 88.1% 11.5% 90.0%

Table 2: The precision@XK of the parallel mechanism under
different L!"%"s on test window of day 1 to 3.

Lirain Precision@K Recall@K Accuracy

15 days 60% 2.1% 88.7%
12 days 67.4% 6.3% 89.3%
9 days 53.0% 1.6% 88.7%

Table 3: The precision@XK of the parallel mechanism under
different L17%"s on test window of day 4 to 6.

well. But it may not be sensitive to the changing pattern since the
data may include many stale patterns. Shorter L!"#" only includes
the most recent data which better helps capture the recent pattern,
and is sensitive to the changing patterns. However, it has the risk
of overfitting. Therefore, when the pattern changing is smooth,
longer L% works better, while when the pattern changing is
rapid, smaller L”%" may be better.

From the above analysis, we can see that there is no one-
fits-all. Currently, we manually adjust L"%", which we referred to
as variable-length sliding training approach. For example, for the
test window of day 1 to 3, the model is trained with L %" being 9
days. And for the test window of day 4 to 6, the model is trained with
Lr4in being 12 days. We can train multiple models with different
values of L9 each time, and the LI that achieves the highest
precision on the previous test window is selected to be used for
the current test window. Of course, a better approach would be
automatically adjust L!"%" based on the current dynamics, which
needs further research and is our future work. Potential methods

Ltrain_

[m m m e e e e,
1 GPU data collection
1
1
& —E—- controller data collector
admin 1
| profiling [policy P
| ey M A]
i
server 1
agent I
I
machine i
|
|nvidia—smi| | dmesg | management sys | i
I
I
i
I
i
i
i

server server ... GPU cluster!
H

Figure 6: GPU data collection infrastructure. “cmdb” means
configuration management database, a standard database to
store information about hardware assets. “machine manage-
ment sys” is an internal system that tracks machine-level
information (e.g., purchased date, expiration date).

include AutoML [12] based approaches and others discussed in
Section 10.

6 DATA COLLECTION INFRASTRUCTURE

In this section, we introduce our data collection infrastructure to
collect the raw GPU dataset. At ByteDance, we have a data collect-
ing system that constantly fetching running status from GPUs both
when they are healthy and encountering failures. It also gathers
GPUs’ static configuration information, for example, expiration
dates and which rack a GPU locates. We build and deploy a data
collection infrastructure based on existing tools (e.g., nvidia-smi,
dmesg, service management systems at ByteDance). It periodically
collects runtime data from GPUs, combines runtime data with static
configurations, and updates the raw GPU dataset. Figure 6 depicts
the architecture of this data collection infrastructure.

This system works as follows. First, an administrator decides
a collecting policy which specifies what data to collect and how
frequently the data is collected, and send this policy to a controller.
The controller then broadcasts this policy to data collecting agents
(daemon processes) running on servers. Agents are responsible for
collecting data from different underlying data sources—for example,
nvidia-smi, dmesg, and /proc/—periodically. Agents are also in
charge of failure detection. If a failure is detected, the agent will
record the failure context and send a failure report to ByteDance’s
failure handling system (omitted in Figure 6).

Predicting GPU Failures With High Precision Under Deep Learning Workloads

Data collector receives data from agents, including both normal
runtime data and failure reports. The collector combines these
dynamic data with static configuration data which is stored in other
ByteDance’s management databases. For example, configuration
management database (cmdb) is one such database that contains
machine and GPU hardware information. Data collector joins all
these data by GPU serial number, a unique identifier for each GPU,
and updates the GPU dataset.

Finally, the updated GPU dataset is stored on HDFS and is used
to generate the time-series dataset as described in Section 2.3 for
model training purposes.

7 EVALUATION

In this section, we evaluate the proposed techniques respectively.
Specifically, we answer the following questions:

e What is the performance of the parallel mechanism and the
cascade mechanism, and how do they compare to baselines?

e How to set the retrain period in sliding training?

e How much do sliding training and variable-length sliding
training help improve the prediction precision and stability?

Experiment setup. We collect four-month production data from
March, 2021 to June, 2021 to generate the time-series dataset. We
evaluate models based on the parallel mechanism (referred to as
parallel model) and the cascade mechanism (referred to as cascade
model) against several baseline models, i.e., 1D-CNN, MLP, and
GBDT. We choose these baseline models because they are the basic
components in the ensemble mechanisms. We evaluate the models
with the following metrics:

e Precision@K as introduced in Section 3. In the evaluations,
we set K to be 2% X N as explained in Section 3.

e Recall@K [19]: Recall at K is the ratio of true positive in-
stances within top K instances (ranked by score) among

Zt"il yi P
-, Similar to
25\21 y

the total positive instances: RecallQK =

precision@K, we set K=2% x N.

e Accuracy. The fraction of predictions the model gets right.
We set the threshold of prediction score to be 0.7, i.e., an
instance i is predicted to be positive if ! > threshold, and
negative otherwise.

Data Balancing. Since the number of negative instances is much
more than that of the positive instances, the training set is highly im-
balanced, and may result in poor performance of models, especially
for the minority class (“failure” class). Therefore, we under sample
the negative instances and over sample the positive instances when
training the models, to make the training set balanced. The ratio
of the positive and negative instances in the training set after sam-
pling is set to 1:1, a commonly used ratio when balancing dataset
for model training purposes. On the other side, for test purposes,
the ratio of the positive and negative instances in the test set is set
to as large as 1:8.

7.1 Evaluation of Ensemble Mechanisms

In this section, we answer the first question. We first evaluate paral-
lel and cascade models against baselines to validate the effectiveness
of the two ensemble mechanisms. Then we evaluate the stability of

SYSTOR 23, June 5-7, 2023, Haifa, Israel

Model Precision@K Recall@K Accuracy
1D-CNN 46.3% 8.3% 87.6%
MLP 44.5% 7.9% 86.8%
GBDT 42.3% 7.6% 87.0%
Parallel 58.2% 7.1% 89.3%
Cascade 50.1% 8.0% 89.1%

Table 4: Comparison of parallel model, cascade model, 1D-
CNN, MLP and GBDT on data in April.

1.0
=]
R el -
8 FIIo¥-y
°; 0.6
& S RN
E”O 4/ —@— Parallel =¥=- MLP ’\\’
: =—&— Cascade GBDT A
=$»— |D-CNN
0.2 T " T
1 2 3 4 5 6

Day
Figure 7: Precision@K comparison of parallel model, cascade
model, 1D-CNN, MLP and GBDT. The y-axis starts at 0.2.

£ (]58 Parallel model
:% 0,87 % 7 BN Cascade model
S0 ? g AN 7
AN AW
0.3 1 3 5 7 9
Retrain period (days)

Figure 8: Precision@XK v.s. retrain period of parallel model
and cascade model. The y-axis starts at 0.3.

these models by testing the daily precision@K. All models in this
section are trained without sliding training.

We train the above models using data collected from March
16th to 31th, 2021, and test the performances of models using data
collected from April 1st to 30th, 2021. Table 4 presents the results of
1D-CNN, MLP, GBDT, parallel and cascade model. From the table
we observe that both parallel model and cascade model achieve
higher precision@K than all the baseline models. The parallel model
improves precision@K from 46.3% (achieved by the best baseline 1D-
CNN) to 58.2%, and the cascade model improves the precision@K
from 46.3% to 50.1%.

To evaluate the stability of predictions, we further test the daily
precision@K. Figure 7 shows the precision@K from April 1st to 6th
as an example. From the figure, we observe that both the parallel
model and the cascade model outperform all baselines all the time.
But similar to the baseline models, their precision@K decreases
with time.

SYSTOR 23, June 5-7, 2023, Haifa, Israel

Model Precision@K Recall@K Accuracy
Parallel (NS) 58.2% 7.1% 89.3%
Parallel (Sliding) 80.0% 10.0% 89.8%
Cascade (NS) 50.1% 8.0% 89.1%
Cascade (Sliding) 78.1% 14.1% 90.3%

Table 5: Comparison of parallel model and cascade model,
with sliding training (Sliding) and without sliding training
(NS) on data in April.

7.2 Evaluation of Retrain Period

In this section, we answer the second question: how do we deter-
mine the retrain period, that is how often we should retrain the
model in sliding training. We set L"" to be 15 days, and evaluate
the models under different retrain periods. Specifically, we set the
retrain period T"¢!74" (defined in §5) to be 1 day, 3 days, 5 days,
7 days, and 9 days, respectively and test the corresponding model
performances from April 1st to 30th.

Figure 8 shows the average precision@K in April when we re-
train the model under different T"¢/"%" From the figure we observe
that the average precision@K when TT¢/7%" s set to be 3 days is
similar to that when T"€!7" ig set to be 1 day. However, when
Tretrain jg get to be longer (i.e., 5 days, 7 days, and 9 days), the
precision@K significantly drops. Similar results are obtained on
data in May and June. Therefore, we set the retrain period to be 3
days in the following experiments.

7.3 Evaluation of Sliding Training

In this section, we evaluate how much the sliding training helps
improve the precision and stability of predictions. The training set
length L% is set to be 15 days for sliding training. Table 5 shows
the performance from April 1st to 30th of the parallel model and
the cascade model with and without sliding training, respectively.
From the table we observe that with sliding training, the overall
performances of both parallel model and cascade model are signif-
icantly improved. Especially, the precision@K is improved from
58.2% to 80.0% for the parallel model, and from 50.1% to 78.1% for
the cascade model. The accuracy and recall@K are also improved
for both two models with sliding training.

To evaluate how much the sliding training helps improve the sta-
bility of precision, we test the daily precision@K. Since the retrain
period T"¢/74" js set to be 3 days, we calculate an average preci-
sion@K for every 3 days. Figure 9 shows the average precision@K
of parallel model and cascade model with and without sliding train-
ing. From the figure we see the precision@K of models with sliding
training is much more stable than the ones without it. With sliding
training, the variance of precision@K decreases from 0.058 to 0.009
for parallel model, and from 0.051 to 0.014 for cascade model, which
validates that the sliding training improves the precision stability.
One thing worth noting is that the “No sliding” method does not
experience the traditional degradation. There are two reasons for
this phenomenon: i) the failure rate during days 16-24 is higher
compared to other days, and thus the prediction precision increases
during these days (higher true positive because of more positive
samples); ii) we hypothesize that the failure pattern during days
16-24 is similar to the previous failure pattern, which leads to an
increase in prediction precision.

Heting Liu, Zhichao Li, Cheng Tan, Rongqiu Yang, Guohong Cao, Zherui Liu, and Chuanxiong Guo

1.00 1.00
o075 5075
z iz
|5 3
(5] (2]
2 g
A~ 0.50 A~ 0.50
X X
& &
& &
=025 £0.25
—— No sliding —— No sliding
—e— Sliding —e— Sliding
009 3 13-15 2527 0093 1315 2527

Day Day
(a) Parallel model. (b) Cascade model.
Figure 9: Precision@K of parallel model and cascade model
with and without sliding training on data in April.

Model Precision@K Recall@K Accuracy
1D-CNN 67.0% 12.1% 89.4%
MLP 66.7% 12.1% 89.2%
GBDT 65.2% 13.4% 88.9%
Parallel 80.0% 10.0% 89.8%
Cascade 78.1% 14.1% 90.3%

Table 6: Comparison of parallel model, cascade model, 1D-
CNN, MLP and GBDT, with sliding training on data in April.

We further compare the performance of parallel and cascade
models against baselines, all with sliding training. The results are
shown in Table 6. From the table we observe that compared to the
best baseline model (i.e., 1D-CNN), the parallel model improves the
precision@XK by 13.0% (from 67% to 80.0%), and the cascade model
improves the precision@K by 11.1% (from 67% to 78.1%). Similar
improvements are achieved on data collected in May and June,
which confirms that the parallel and cascade model still outperforms
baselines with sliding training.

7.4 Evaluation of Variable-Length Sliding
Training

To validate the effectiveness of the variable-length sliding train-
ing, we evaluate the parallel model and the cascade model with
fixed-length sliding training and variable-length sliding training, re-
spectively. For fixed-length sliding training, the training set length
LPrain s set to be 15 days. For variable-length sliding training, we
train three models with L¥”#" to be 9 days, 12 days, and 15 days
respectively, and use the model with the highest precision@K for
each test window. Figure 10 shows the precision@XK of parallel
model and cascade model with fixed-length sliding training and
variable-length sliding training on data in April. Table 7 shows
the average precision@K, recall@K, and accuracy over one month.
With variable-length sliding training, the precision@K is improved
by 5.4% for the parallel model, and 2.6% for the cascade model.

To validate the generality of our proposed techniques we further
present the model performance in May and June. Figure 11 and
Figure 12 show the performance of parallel model and cascade
model with fixed-length sliding training and variable-length sliding
training on the valid data collected in May and June. Table 8 and
Table 9 show that the parallel and cascade model with variable-
length sliding training achieve precision@K of 84.4% and 74.0%

Predicting GPU Failures With High Precision Under Deep Learning Workloads

1.00 1.00
= =
S S
‘%075 ‘% 0.75
2z 2
g =
~ ~
X X
& 0.50 0,50
& &
= —+— 15-day sliding = —+— 15-day sliding
025 —e— Variable-length sliding 02 —e— Variable-length sliding
. 25
|
1-3 13-15 2527 13 1315 2527
Day Day

(a) Parallel model. (b) Cascade model.

Figure 10: Precision @K comparison of parallel model and
cascade model with fixed-length and variable-length sliding
training on data in April.

1.00 1.00
S075 So075
i) 15}
2 4
A+ 0.50 A~ 0.50
X X
(9} N
5 5
£ 025 —— [5-day sliding =025 —— [5-day sliding
—e— Variable-length sliding —e— Variable-length sliding
|
009379 1315 1021 2527 0093 1315 2527
Day Day

(a) Parallel model. (b) Cascade model.

Figure 11: Precision@K comparison of parallel model and
cascade model with fixed-length and variable-length sliding
training on data in May.

1.00 1.00
= =
9] S
‘% 0.75 ‘%075
S 5]
2 =
~ ~
X X
& 0.50 0,50
g g
= —— 15-day sliding = —+— 15-day sliding

- —e— Variable-length sliding
-

7-9 13115 1921 2527 7-9 13415 1921 2527
Day Day

(b) Cascade model.

2 —e— Variable-length sliding

(a) Parallel model.

Figure 12: Precision@K comparison of parallel model and
cascade model with fixed-length and variable-length sliding
training on data in June.

in May, and 81.6% and 75.8% in June, which outperform the fixed-
length sliding training, consistently. The average precision of the
parallel model and the cascade model over three months are 84.0%
and 76.9%, respectively.

8 RELATED WORK

As stated earlier, our study is the first to predict GPU failures in a
large-scale DL cluster. In this section, we list and discuss the most
relevant works, organized in topics.

SYSTOR 23, June 5-7, 2023, Haifa, Israel

Model Precision@K Recall@K Accuracy
Parallel (FL) 80.0% 10.8% 90.2%
Parallel (VL) 85.4% 13.2% 91.5%
Cascade (FL) 78.1% 15.3% 91.4%
Cascade (VL) 80.7% 17.4% 91.8%

Table 7: Comparison of parallel model and cascade model
with fixed-length (FL) and variable-length (VL) sliding train-
ing on data in April.

Model Precision@K Recall@K Accuracy
Parallel (FL) 80.5% 10.9% 90.5%
Parallel (VL) 84.4% 12.7% 91.3%
Cascade (FL) 68.3% 12.1% 89.8%
Cascade (VL) 74.0% 14.5% 90.6%

Table 8: Comparison of parallel model and cascade model
with fixed-length (FL) and variable-length (VL) sliding train-
ing on data in May.

Model Precision@K Recall@K Accuracy
Parallel (FL) 81.0% 11.7% 90.8%
Parallel (VL) 81.6% 12.0% 91.0%
Cascade (FL) 74.6% 14.8% 90.4%
Cascade (VL) 75.8% 14.9% 90.8%

Table 9: Comparison of parallel model and cascade model
with fixed-length (FL) and variable-length (VL) sliding train-
ing on data in June.

Predicting failures. It is natural to consider leveraging models to
predict failures. Indeed, many prior works [3, 5, 9, 16, 18, 36] build
algorithms and models to anticipate emerging failures. Specifically,
Bontezatu et al. [3] build a classification model to predict disk
replacements using SMART attributes, a set of sensor parameters
for hard drives. Similarly, Liang et al. [18] predict system failures
by three heuristics relating to failures’ temporal characteristics,
spatial characteristics, and non-fatal events. Kalra et al. [16] build a
framework PRISM based on linear regression and similarity analysis
to predict failures in GPU programs.

Beyond heuristic algorithms and classic statistic models, neural
networks are also used to predict assorted status in large-scale sys-
tems. PRACTISE [36] is a time series prediction model based on
neural networks that forecasts future loads in a datacenter. Though
not aiming at failures, the idea of using neural networks is inspiring.
Gao et al. [9] build deep neural networks to predict task failures
in cloud data centers. Desh [5] is another example of using neu-
ral networks to predict system health for HPC. The most relevant
work [24] studies four machine learning models—neural networks
included—to predict single-bit errors in GPU memory. Besides vari-
ous differences in the context (e.g., different training features, HPC
vs. DL workloads), our approach focuses on building ML models
to predict future GPU failures. In addition, our method differs in
the data preprocessing, where we have designed several specialized
methods to better assist model training.

GPU failures. A line of research [10, 22—24, 32] on Titan super-
computer studies various GPU failures, including investigating
GPU errors in general [32], analyzing GPU software errors [22],
and characterizing GPU failures with temperature and power [23],

SYSTOR 23, June 5-7, 2023, Haifa, Israel

and failures’ spatial characteristics [10]. A study [6] about another
supercomputer, Blue Water, analyzes GPU failures among other
hardware failures. One of their observations is that GPUs are among
the top-3 most failed hardware and GPU memory is more sensitive
to uncorrectable errors than main memory. This highlights that
compared with other hardware components, GPUs are prone to
failures. On contract, we study the GPU failure prediction instead.

Hardware failures. Besides GPUs, there are studies focusing on
failures of other hardware components, including DRAM [20, 30],
disks [27], SSDs [29], co-processors like Xeon Phi [26], and other
datacenter hardware [33]. Our study on GPU failure prediction can
potentially be extended to other hardware components as well.

Failures in large-scale systems. With the popularity of dis-
tributed systems, characterizing failures at scale are important for
building robust and fault-tolerant systems. Oliner and Stearley ex-
amine system logs from five supercomputers and inspect causes of
failures [25]. Similarly, there is a thread of research on this topic
for datacenters [34], distributed systems [8], cloud computing [33],
and physical/virtual machine crashes [2]. Our work focuses on pre-
dicting GPU failures, without yet considering communication and
dependencies between GPUs and machines. It is our future work
to investigate failures in distributed training when failure patterns
in networks, NVLinks, NVSwitch, and PCle buses are essential.

9 DISCUSSION

Precision vs. recall: we prefer precision. As shown in our exper-
iments (§7), our prediction models have high precision but low recall.
That means the predicted faulty GPUs are likely to fail in a near
future, meanwhile the models overlook many GPUs that will fail
soon. This is a classic trade-off that appears in practice, sometimes
also known as false positives versus false negatives [31]. In the early
stage of predicting GPU failures, we argue that precision is more
important than recall because the cost of having a false positive
(predicting a healthy GPU as faulty) is high, which requires a round
of (possibly manual) examination and results in a waste of GPU
resources, while the overlooked faulty GPUs will be handled by
today’s failure procedure. Though we want to avoid using suspi-
cious GPUs, we do not want to decrease our GPU utilization while
deploying the GPU failure prediction system. In future work, we
will improve recall while maintaining high precision. In addition,
so far, our models only provide auxiliary information to the current
monitoring system. We do not expect the models to recognize all
failures (hence low recall is okay). Other production systems [31]
have the same design choice of preferring precision over recall.

Simple vs. larger models: we prefer simplicity. We use simple
models to predict GPU failures for three reasons. First, the simple
solution works well for us now. Compare with not having any fail-
ure predictions, our current approach predicts failures with high
fidelity, yet, of course, overlooks many faulty GPUs. But, this is
already an improvement over cases without prediction. Second, we
appreciate explainability in production. Compare with a gigantic
black-box model, we have better insights of our current ensemble
models about why they work, which provides us ways to “debug”
our models easily. Third, larger and fancier models are expensive,
both in dollars and in training time. We did consider complex SOTA

Heting Liu, Zhichao Li, Cheng Tan, Rongqiu Yang, Guohong Cao, Zherui Liu, and Chuanxiong Guo

models such as transformer-based time series forecasting models.
However, the costs of these models are much higher than our pro-
posed models, which may be less effective in practice, especially
when we need periodically retraining models.

Failure pattern drift. Our hypothesis of why failure patterns
drift is that the dynamics of datacenters—such as workload shift,
hardware reorganization, and software updates—change how and
when GPUs may fail. For example, our GPU clusters were severely
affected by a GPU failure causing GPUs to hang. The observable
behavior of this failure is that the NVIDIA interface (nvidia-smi
and NVML) stops responding. However, there are no explicit fault sig-
nals. After working closely with NVIDIA’s onsite troubleshooting
team, it turns out that the driver that we used at the time has a bug;
GPU drivers may deadlock in a combination of certain contexts and
scheduling policies. NVIDIA resolved the issue in a later driver up-
date, and we stop observing this failure. Some other factors such as
workload shift, humidity, and temperature changes, can potentially
lead to failure pattern drifts. However, they are difficult to explain
as the changes may not cause intermediate GPU failures. We may
conduct more feature analysis in future work to explain the cause
of pattern drift.

Top-K parameter. We choose 2% as our K in Top-K parameter
(§3). We have tried other K values, including 1%, 2%, 5%, and 10%.
It turns out that when K gets larger, the precision@K drops signifi-
cantly. For example, compared with K of 2%, the precision@K when
K is 10% drops about 10%-20% which is significant. Because we
prefer precision@K over recall@K (to guarantee that the predicted
faulty GPUs are likely to fail soon), we choose 2% over 10%. In fact,
choosing K as 10% doesn’t improve recall@K by much—recall@K
increases by about 5%-10% for K=10%. Also, we didn’t choose 1% as
well since its recall@K is unacceptably low.

HPC workloads vs. DL workloads. Prior works [22, 24, 32] have
studies GPU failures under HPC workloads. However, what we
observed is that workloads for HPC and DL differ significantly. In
DL workloads, GPUs are the main computing power and running
mostly two types of jobs—neural network training and inference,
whereas HPC workloads have more diverse task types. Indeed,
compared with the failure summary of the data collected from
HPC [32], GPU failures that we logged differ in appearing frequency,
dominant types, and arrival time distribution.

Other possible features for prediction. Our raw dataset contains
other information that can be used for prediction, including the
position of a GPU (in a machine), and the location of a machine
(in a rack), NVLink/VNSwitch status, CPU utilization, and memory
utilization. We didn’t observe significant correlations between GPU
failures and these factors, so we do not include these features in
our training dataset. Interestingly, some of prior studies [10, 34]
point out some of these factors, like locations, might be indicators
of failures, which we see this as another difference between DL
workloads and non-DL workloads.

Will sliding training overfit the current dataset? Yes. Our
approach of sliding training with different L{"%" will overfit the
current datasets. Nevertheless, overfitting is not a problem in our
setup because the models are not supposed to be general for other
datacenters, or even for other time periods of the same datacenter.

Predicting GPU Failures With High Precision Under Deep Learning Workloads

Prediction window length. The length of the prediction window
(i.e., 1-day in this paper) affects the prediction precision. As we
observed, the precision increases as the length of the prediction
window increases. However, a longer prediction window also leads
to coarse prediction granularity, which means more GPUs will be
predicted to fail (including the ones that may not fail in a short
time), leading to a potential waste of GPU resources. Considering
both prediction precision and operational costs, we choose 1-day
as the length of our prediction window.

Is the prediction online or offline? The prediction is online.
Predicting Top-K requires us to make predictions for many GPUs
and then rank them. However, these predictions can be performed
in parallel and moreover, each prediction only takes milliseconds.
Thus the whole prediction is performed in an online manner.

10 FUTURE WORK AND CONCLUSION

Next steps. In this section, we discuss our next steps of predicting
GPU failures. First, we plan to explore other forms of ensemble
mechanisms, including combining cascade and parallel mechanisms,
and changing model numbers in the cascade and parallel mecha-
nisms. To combine cascade and parallel mechanisms, we can replace
the first (or the second) model in the cascade mechanism with a
parallel model. Besides, there are several factors (e.g., number of
models) that trade off the precision and recall in the ensemble
mechanisms. For the parallel mechanism, precision will improve
if adding more models, but the recall will decrease because fewer
instances are selected. For the cascade mechanism, precision will
improve when we make the first model filter out more instances,
but the recall will decrease because some positive instances may
be filtered out. The intuition on how to choose between the cas-
cade and parallel models is that the parallel model tends to achieve
higher precision while the cascading model tends to achieve higher
recall (as shown in the experiment results). The reason is that in
parallel models, the joint positive instances voted by models with
different architectures are more likely to be true positives (i.e., high
precision). But the recall will decrease relatively.

Second, we will explore how to automatically adjust the variable-
length sliding training. One possible solution is to integrate AutoML
into the variable-length sliding training. Specifically, we can train
several models with different training set lengths and evaluate their
performances on the recently collected data. Then the training set
length of the top-precision model will be used for the training of
the current model.

Conclusion. Studying the models for GPU failure prediction is
crucial, since GPU failures are common, expensive, and may lead to
severe consequences in today’s large-scale deep learning clusters.
This paper is the first to study the prediction of GPU failures under
production-scale logs. We observe the challenges of GPU failure
prediction, and propose several techniques to improve the precision
and stability of the prediction models. The proposed techniques
can also be used in other failure prediction problems, such as the
failures prediction in DRAM, disks, and SSDs.

REFERENCES

[1] Samuel Ackerman, Orna Raz, Marcel Zalmanovici, and Aviad Zlotnick. 2021.
Automatically detecting data drift in machine learning classifiers. arXiv preprint

[10

[11

[12

(13

=
&

[15

[16

(17

oy
&

[19

[20

[21

[22]

~
=

[24

SYSTOR 23, June 5-7, 2023, Haifa, Israel

arXiv:2111.05672 (2021).

Robert Birke, Ioana Giurgiu, Lydia Y Chen, Dorothea Wiesmann, and Ton Eng-
bersen. 2014. Failure analysis of virtual and physical machines: patterns, causes
and characteristics. In 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks.

Mirela Madalina Botezatu, Ioana Giurgiu, Jasmina Bogojeska, and Dorothea
Wiesmann. 2016. Predicting disk replacement towards reliable data centers. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. 2004.
Ensemble selection from libraries of models. In Proceedings of the twenty-first
international conference on Machine learning. 18.

Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:
deep learning for system health prediction of lead times to failure in HPC. In
Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing.

Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico,
Joseph Fullop, and William Kramer. 2014. Lessons learned from the analysis
of system failures at petascale: The case of blue waters. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep neural network ensembles for time series
classification. In 2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, 1-6.

Daniel Ford, Francois Labelle, Florentina Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. 2010. Availability in
globally distributed storage systems. (2010).

Jiechao Gao, Haoyu Wang, and Haiying Shen. 2020. Task failure prediction in
cloud data centers using deep learning. IEEE Transactions on Services Computing
(2020).

Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers, and Don
Maxwell. 2015. Understanding and exploiting spatial properties of system fail-
ures on extreme-scale HPC systems. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks.

Lars Kai Hansen and Peter Salamon. 1990. Neural network ensembles. IEEE
transactions on pattern analysis and machine intelligence 12, 10 (1990), 993-1001.
Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowledge-Based Systems 212 (2021), 106622.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Huzaifa Izzeldin, Vijanth S Asirvadam, and Nordin Saad. 2011. Online sliding-
window based for training MLP networks using advanced conjugate gradient. In
2011 IEEE 7th International Colloquium on Signal Processing and its Applications.
IEEE, 112-116.

Kalervo Jarvelin and Jaana Kekalainen. 2017. IR evaluation methods for retrieving
highly relevant documents. In ACM SIGIR Forum, Vol. 51. ACM New York, NY,
USA, 243-250.

Charu Kalra, Fritz Previlon, Xiangyu Li, Norman Rubin, and David Kaeli. 2018.
Prism: Predicting resilience of gpu applications using statistical methods. In
SC’18: International Conference for High Performance Computing, Networking,
Storage and Analysis.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).
Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris Jette, and
Ramendra Sahoo. 2006. Bluegene/1 failure analysis and prediction models. In
International Conference on Dependable Systems and Networks (DSN’06).

Yuri Malheiros, Alan Moraes, Cleyton Trindade, and Silvio Meira. 2012. A source
code recommender system to support newcomers. In 36th annual computer soft-
ware and applications conference. IEEE, 19-24.

Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. 2015. Revisiting
memory errors in large-scale production data centers: Analysis and modeling of
new trends from the field. In 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks.

Fionn Murtagh. 1991. Multilayer perceptrons for classification and regression.
Neurocomputing 2, 5-6 (1991), 183-197.

Bin Nie, Devesh Tiwari, Saurabh Gupta, Evgenia Smirni, and James H Rogers.
2016. A large-scale study of soft-errors on GPUs in the field. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
Bin Nie, Ji Xue, Saurabh Gupta, Christian Engelmann, Evgenia Smirni, and Devesh
Tiwari. 2017. Characterizing temperature, power, and soft-error behaviors in
data center systems: Insights, challenges, and opportunities. In 2017 IEEE 25th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS).

Bin Nie, Ji Xue, Saurabh Gupta, Tirthak Patel, Christian Engelmann, Evgenia
Smirni, and Devesh Tiwari. 2018. Machine learning models for GPU error pre-
diction in a large scale HPC system. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).

SYSTOR 23, June 5-7, 2023, Haifa, Israel Heting Liu, Zhichao Li, Cheng Tan, Rongqiu Yang, Guohong Cao, Zherui Liu, and Chuanxiong Guo

[25] Adam Oliner and Jon Stearley. 2007. What supercomputers say: A study of five [32] Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech, Sudhar-

system logs. In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). IEEE, 575-584.

Daniel Oliveira, Laércio Pilla, Nathan DeBardeleben, Sean Blanchard, Heather
Quinn, Israel Koren, Philippe Navaux, and Paolo Rech. 2017. Experimental
and analytical study of Xeon Phi reliability. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. 2007. Failure
trends in a large disk drive population. (2007).

Orna Raz, Marcel Zalmanovici, Aviad Zlotnick, and Eitan Farchi. 2019. Automati-
cally detecting data drift in machine learning based classifiers. In The AAAI-19
Workshop on Engineering Dependable and Secure Machine Learning Systems Soft-
ware Engineering for Machine Learning (EDSMLS 2019).

Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash reliability in
production: The expected and the unexpected. In 14th USENIX Conference on File
and Storage Technologies (FAST 16). 67-80.

Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sud-
hanva Gurumurthi. 2013. Feng shui of supercomputer memory positional effects
in DRAM and SRAM faults. In SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.

Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. 2019. {NetBouncer}: Active Device and Link
Failure Localization in Data Center Networks. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 599-614.

shan Vazhkudai, Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe
Navaux, et al. 2015. Understanding GPU errors on large-scale HPC systems and
the implications for system design and operation. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA).

Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing
cloud computing hardware reliability. In Proceedings of the 1st ACM symposium
on Cloud computing.

Guosai Wang, Lifei Zhang, and Wei Xu. 2017. What can we learn from four years
of data center hardware failures?. In 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).

Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017.
End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In 2017 IEEE international conference on intelligence and security
informatics (ISI). IEEE, 43-48.

[36] Ji Xue, Feng Yan, Robert Birke, Lydia Y Chen, Thomas Scherer, and Evgenia

Smirni. 2015. Practise: Robust prediction of data center time series. In 2015 11th
International Conference on Network and Service Management (CNSM). IEEE.

[37] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali Krish-

naswamy. 2015. Deep convolutional neural networks on multichannel time series
for human activity recognition. In Twenty-fourth international joint conference on
artificial intelligence.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-term memory
over recursive structures. In International Conference on Machine Learning. PMLR,
1604-1612.

	Abstract
	1 Introduction
	2 Setup and problem statement
	2.1 Setup
	2.2 Problem statement
	2.3 Constructing time-series datasets

	3 Failed Attempts: Classic Models
	3.1 Classic models
	3.2 Training, preliminary results, and challenges

	4 Model-Ensemble Technique
	5 Sliding Training Technique
	6 Data Collection infrastructure
	7 Evaluation
	7.1 Evaluation of Ensemble Mechanisms
	7.2 Evaluation of Retrain Period
	7.3 Evaluation of Sliding Training
	7.4 Evaluation of Variable-Length Sliding Training

	8 Related Work
	9 Discussion
	10 Future work and Conclusion
	References

