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Abstract—The increasing amount of resources in a single
machine constantly increases the level of server consolidation
for virtualization. However, along with the improvement of
server efficiency, the dependability of the virtualization layer
is not being progressed towards the right direction; instead,
the hypervisor level is more vulnerable to diverse failures due
to the increasing complexity and scale of the hypervisor layer.
This makes tens to hundreds of production VMs in a machine
easily risk a single point of failure.

This paper tries to mitigate this problem by proposing
a technique called TinyChecker, which uses a tiny nested
hypervisor to transparently protect guest VMs against failures
in the hypervisor layer. TinyChecker is a very small software
layer designated for transparent failure detection and recovery,
whose reliability can be guaranteed by its small size and pos-
sible further formal verification. TinyChecker records all the
communication context between VM and hypervisor, protects
the critical VM data, detects and recovers the hypervisors
among failures. TinyChecker is currently still in an early
stage, we report our design consideration and initial evaluation
results.

Keywords-Hypervisor failure, Failure detection, Fault toler-
ance

I. INTRODUCTION

Virtualization has been a common technique for current
multi-tenant cloud. By running multiple VMs atop a virtual
machine monitor (VMM, or hypervisor), the efficiency of a
server machine can be maximized by multiplexing resources
among the hosted VMs and smoothing peak time resource
demands. With the amounting of resources in a single
machine tightly following Moore’s Law, the number of
VMs being consolidated to a single machine is constantly
increasing and it is no surprise to see tens to hundreds of
VMs running atop a single machine.

The growing level of server consolidation also creates
increasing demand of high dependability of the virtualization
layer. Unfortunately, with more and more functionalities be-
ing integrated into the virtualization layer, the scale and com-
plexity of the virtualization layer also increase dramatically
since its initial design. Table I shows the increase of code
size among different major versions. The constantly adding
complexity also decreases the reliability of the virtualization,
which has been reflected in frequent bug/crash reports in
major hypervisor vendors’ mailing list. With the increasing
number of VMs in a single machine, a tiny bug or exploit

of security vulnerability may crash the whole virtualization
layer, rendering hundreds of VMs out of services.

Table I
XEN CODE’S EXPANSION

version VMM Dom0 Kernel Tools
Xen v2.0 45K 4136K 26K
Xen v3.0 121K 4807K 143K
Xen v4.0 270K 7560K 647K

While it is impossible to completely survive failures in the
virtualization layer, prior research has resulted in a number
of mitigation approaches. One viable approach would be pe-
riodically checkpointing the running VMs [11] and restoring
the checkpointed VMs to another VMM. However, the cost
can be quite high for hundreds of VMs running atop a single
hypervisor and the states between two checkpoints will be
lost. The replicated state machine approach [10] is also
quite heavyweight and cannot trivially handle multiprocessor
VMs. Practically monitoring the status of hypervisor and
live migrating the VMs to other hypervisors are also heavy-
weight in requiring in creating network bursts and it is not
always safe for migration under a buggy VM. ReHype [7],
instead, is designed to survive hypervisor failures in place.
However, the detection and recovery modules is collocated
with the hypervisor, which can be easily contaminated or
even corrupted by the failures in the hypervisor.

In this paper, we propose TinyChecker, which provides
transparent detection and recovery of VMs against hyper-
visor failures. Unlike previous approaches, TinyChecker
provides in-place recovery and is completely isolated from
the questioning hypervisor. The key technique of our ap-
proach is leveraging a special-purposed hypervisor using
nested virtualization [12] for failure detection and recovery.
Because of the small size, TinyChecker can be more reliable
than commodity hypervisor. It is also possible to use formal
verification assure TinyChecker’s correctness.

By interposing the control and data exchange between the
hypervisor and the guest VMs, TinyChecker can transpar-
ently detect hypervisor’s failure and recover the system with-
out losing the on-going work in per-exit level. TinyChecker
also replicates critical VM states from the hypervisor to
defend against wild writes upon failures. When a failure
is detected, TinyChecker will reboot the hypervisor while
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preserving the states and data of the VMs in the memory.
We have done a preliminary implementation of Tiny-

Checker, which is a tiny nested hypervisor with the fail-
ure checking module. A set of fault injection experiments
shows that TinyChecker can successfully survive hypervisor
failures. An initial performance evaluation show that the
overhead incurred by TinyChecker is very small.

The rest of this paper is organized as follows. The next
section discusses about existing solutions, challenges and
our fault model. Section 3 describes TinyChecker and the
mechanisms to address the challenges. In section 4, the paper
explains how to handle the failures in detail. The perfor-
mance evaluation will be presented in section 5. Finally, we
introduce the related work in section 6 and summarize our
conclusions in section 7.

II. HYPERVISOR FAULT TOLERANCE

Hypervisor failures which will cause hypervisor or VM
corruption can be triggered by many software vulnerabilities
or bugs. As the result of hypervisor failures, the whole
platform will be out of service. Even worse, hypervisor erro-
neous actions may crash the management data in hypervisor
or even corrupt the memory in guest VMs.

A. Hypervisor Microreboot
In order to tolerant the failures, virtualized system should

have more efficient and effective abilities to correct the
corrupted states. In order to overcome the shortcomings of
naive rebooting, microreboot [8], [9] have been introduced
to accelerate reboot procedure and preserve the work in
progress. In a similar way, hypervisor microreboot [6] has
been proposed to avoid rebooting all guest VMs. Generally,
hypervisor microreboot involves three steps:1) Failure detec-
tion; 2) Hypervisor recovery and 3) State merge. Through
these steps, the system can preserve the state of VM in
memory and restore them when a new hypervisor is ready.

Failures can be classified as crash, hang, memory corrup-
tion and silent failure. Crash is an explicitly indicated failure
which can be detected by existing hypervisor exception
handlers. Hang is a failure where hypervisor is out of ser-
vices. Typical method uses watchdog which sends periodic
interrupts to check the availability of hypervisor. Memory
corruption is the most dangerous failure, which may crash
the critical data both in hypervisor and guest VMs. Some
mechanisms, such as redundant data, can solve this problem
to some extent. However, these solutions cause non-trivial
performance overhead and it cannot guarantee recovering
to the most recent state. Silent failure is a fault which the
hypervisor has run some erroneous code, but no panic or
exception is triggered. It is more difficult to detect than the
previous failures.

Hypervisor recovery is the procedure to correct the mass
states after a failure happens. Corrupted state can be re-
covered by simply reboot the hypervisor, but normal reboot
leads to lose all the current states.

B. Challenges

Traditional failure detection techniques will miss some of
the failures which will not trigger crash or hang explicitly.
These failures include wrongly updating CPU states, cor-
rupting VM memory and critical data in hypervisor. How
to detect the failures is a key challenge for hypervisor
fault tolerance. TinyChecker uses a new mechanism called
context-aware checking which will be described in section
3B to deal with this challenge. The basic idea of context-
aware checking is to let TinyChecker know the context of
the hypervisor’s actions in order to detect its failures.

Another challenge is how to verify the correctness of
the preserved data which may have been crashed in the
hypervisor failure. If simply reusing all the data without
any assurance, the new hypervisor instance may fail another
time. In order to avoid the malicious modification, Tiny-
Checker uses on-demand checkpoint mechanism to solve
this problem. The basic idea of on-demand checkpoint is
to create a checkpoint for the old version when a suspicious
update happens.

C. Fault Model

In our fault model, all the failures are assumed to be
caused by software bugs. Software bugs can run arbitrary
code and modify arbitrary memory space, because every-
thing may happen in an error condition. We currently do
not consider hardware failures.

The outcome of the failures can be manifested as four
types which are introduced in section 2A. Software bugs
can cause all the failures by jumping to impossible branches
and updating the memory incorrectly. In order to prevent the
affection of hypervisor software failures, hardware virtual-
ization is used to support the isolation between hypervisors
and TinyChecker. In this way, hypervisor failures cannot
propagate to the TinyChecker space. On the other hand,
prior experiences shows that a smaller code size usually rep-
resents more reliable software[4][5]. Because TinyChecker
has small code size, it will be more likely to have strong re-
liability than commodity hypervisor. Furthermore, compiler-
based techniques can be used to strength the reliability of
TinyChecker and formal verification method can be used to
confirm the correctness of TinyChecker in the future.

III. TINYCHECKER

A. Overview

TinyChecker is a tiny nested hypervisor which runs under-
neath the commodity hypervisor. It can provide transparent
detection and recovery of guest VMs against hypervisor
failures. There are three parts in the TinyChecker: access
recorder, memory protector and failure detector.

Access recorder responds for recording the entire commu-
nication context between VMs and hypervisor into a table
called request table. Communication represents vmexit and
vmentry which are the transitions between VMX non-root



operations and VMX root operations. Request table contains
three columns which are domain id, vmexit reason and time
of the vmexit. Request table will support the failure checking
by providing vmexit context.

The duty of memory protector is to guarantee the integrity
of the critical data. During the TinyChecker initialization
stage, the critical area in memory will be set to readable but
non-writable to hypervisor. The critical areas in hypervisor
are the metadata for managing VMs, such as p2m table
or running domain list. VM’s memory is another critical
areas which has also been protected by TinyChecker after
its allocation. However, not all the pages in VM’s address
space will be protected. I/O buffer is one exception as it
is the communication channel between the hypervisor and
guest VMs.

During the VM’s initialization, I/O buffer’s addresses have
been detected by listening on the special registers and DMA
request. These pages are not protected by TinyChecker,
because it is legal for hypervisor to fill these pages. In short,
memory protector has protected the critical memory from
hypervisor’s arbitrary modification.

Failure detector is the core part of TinyChecker which
is going to detect and confirm the hypervisor failure’s
occurrence. Information provided by access recorder and
memory protector helps failure detector to verify the suspi-
cious operations. Through two mechanisms called context-
aware checking and on-demand checkpoint failure detector
can detect failures happened in hypervisor and provide an
consistent state after the failure.

Figure 1 shows the overview of TinyChecker.

Figure 1. TinyChecker overview: P represents Memory Protector, R
represents Access Recorder and D represents Failure Detector

Figure 1(a) describes the normal behavior of an vmexit
and the hypervisor’s actions. First, the VM traps into hyper-
visor. Through checking the vmexit reason, hypervisor serve

the VM’s request by updating its metadata or filling the I/O
buffer.

Figure 1(b) shows the logical structure of TinyChecker.
The shaded area has been protected by the memory pro-
tector, and all the modification in these areas will be
detected. All the communication between guest VMs and
the hypervisor will be interposed by access recorder.Failure
detector receives the information from the other two parts of
TinyChecker and makes the decision that whether a failure
happens in this turn of hypervisor’s execution.

B. Context-aware checking

Using current solutions, failures which do not trigger
crash or hang will either cannot be detected or cause non-
trivial overhead. In order to capture the failures accurately
and efficiently, detailed information is needed to check
suspicious operations.

TinyChecker introduces a checking mechanism called
context-aware checking to detect and confirm the failure
which is difficult to discover. The basic idea of context-
aware checking is letting failure detector know what actions
the hypervisor will take in the following period based on the
vmexit reason in VMCS. VMCS is short for virtual machine
control structure which controls the transitions of vmentry
and vmexit. Hypervisor behaves differently when the VM
exit with different reasons. In detail, when a VM causes a
vmexit, the vmexit reason and its qualification will be saved
in the corresponding part of VMCS. TinyChecker first parses
the VMCS and record the reason of this vmexit. Different
exit reasons determine different registers or different part of
VMCS to be updated. Through analyzing the reason and
qualification of the VM request, TinyChecker hashes the
irrelevant data both in VMCS and general purpose registers.
The hash will be saved for further checking. At the time of
vmresume, TinyChecker will hash the current state again to
check whether there is an illegal modification.

Compared with CPU states in VMCS and registers, mem-
ory updates are more complicated. Concerning the update to
the metadata in hypervisor or the VM memory, TinyChecker
uses a context signature table to verify the correctness of
this memory update operation. Context signature is the hash
of specific triplet which includes vmexit reason, the binary
code block involving this operation and the memory area
which this operation wants to update. In the triplet, vmexit
reason helps TinyChecker to verify the control flow of the
hypervisor. The recorded binary code block is a certain
length of memory which have been pointed by pc register at
that time. It helps to identify the memory access operation
and integrity of the code in hypervisor. Different vmexit and
code will modify different memory areas, the memory area
in triplet guarantees that operations update the right part
of memory. The main process of context-aware checking is
showed in figure 2.



Figure 2. Context-aware Checking

TinyChecker calculates the hash of context signature of
one write memory instruction, and search the signature table
to see whether this operation is safe. If the hash hits, the
operation should be executed faithfully, else it is considered
to be a suspicious memory operation and an on-demand
checkpoint will be made. By both state and memory context-
aware checking, TinyChecker can detect all kinds of failures
which modify the data it should not have to.

C. On-demand checkpoint

Periodic checkpoint is an important method for fault toler-
ance today. It can provide a consistent and correct state at the
time the checkpoint is made. However, periodic checkpoint
causes non-trivial performance loss and may not provide
the latest state just before the failure happens. TinyChecker
introduces a mechanism called on-demand checkpoint which
will fulfill the requirements of both the little performance
loss and the latest state of the system. The key idea of on-
demand checkpoint is to make a redundant data structure
only when some suspicious updates happens.

Because of the memory protection, TinyChecker can
detect all the modification in the critical memory area.
Further, through the context-aware checking, the operation
will be identified as either safe or suspicious. TinyChecker
will make an on-demand checkpoint if the operation is
considered to be suspicious. One on-demand checkpoint will
exist from the time it has been created to the time this
operation is confirmed to be safe. If any failures have been
detected in this period of time, TinyChecker will roll back
its on-demand checkpoints. In this case, the critical part in
the system will roll back to the state just before the failure
has happened.

IV. HANDLE THE FAILURES

Hypervisor failures can be classified as four types: crash,
hang, memory corruption and silent failure. The features of
each failure are described in Table 2.

Table II
FAILURE CLASSIFICATION

Failure type Trigger
Handler

Never
Resume

Corrupt
Memory

Corrupt
State

Crash Y - - -
Hang N Y - -

Memory Corruption N N Y -
Silent Failure N N N Y

In the table above, ’Y’ represents this situation will
happen in this failure; ’N’ represents this situation will not
happen and ’-’ represents the corresponding situation may
happen.

A. Crash

Crash is a failure which has been explicitly declared in
the hypervisor. In Xen[1] a lot of BUG function have been
written in the branch which should never reach. If any BUG
function is triggered, it means a dangerous condition is
satisfied and a failure has occurred in the hypervisor. Other
crash situations will trigger panic and exception handlers
which are easy to detect.

B. Hang

Hang is another failure whose outcome is the out of
services. TinyChecker uses the request table with the interval
of the vmexit service time to measure whether the hypervisor
is out of services. Access recorder records every VM’s
vmexit as triples (domid, reason, time) and delete this entry
when successfully resume to VM. Because the vmexits
must be in sequential order within one VM, the number
of entries in the request table will not exceed the number of
active domains. With these information, a straight forward
detecting method is to check how long have the requests
stayed in the table. If all the request stay for a long time
and no requests are met in this period, the hypervisor is
confirmed to be hanging.

A watchdog will periodically send a NMI signal to
check the service time. If all the vmexit time intervals are
larger than a certain threshold (e.g., 2s), the hypervisor is
considered to meet some failures.

C. Memory Corruption

Memory corruption is the failure which hypervisor has
wild wrote the critical memory. When hypervisor fails, it
may run arbitrary code that may write arbitrary memory.
Since the data cannot be reused for recovery, it is hard to
tolerant the memory corruption failure. Nowadays solution
involves periodic checkpoint, redundant data structures and
redundant computations. However, these generic solutions
lead non-trivial performance loss. TinyChecker use on-
demand checkpoint to reduce the overhead of redundant data
structures. In TinyChecker, the data will be duplicated only
when needed.



TinyChecker’s memory protector begins its initialization
procedures after hypervisor’s initialization. First, the critical
parts in hypervisor’s memory will be detected and divided
into several areas. The following areas should be protected:

1) Domain list
2) EPT page table for VM
3) IRQ descriptor table and IO-APIC entries
4) Shared page between hypervisor and VM

These areas are critical for recovery, because they should
be reused to quick reboot the hypervisor. Second, the write
ability to these areas will be deprived, but the read ability is
retained. In this case, the updating actions in these areas
will cause EPT violation and trap into TinyChecker. In
the corresponding handler, TinyChecker will first do the
context-aware checking to verify whether this operation is
suspicious. If it is safe, which means hash hit in the context
signature table, TinyChecker will help to update this mem-
ory. Yet, if the hash miss in context signature, the memory
protector will duplicate the old version of this page as an on-
demand checkpoint and then update the corresponding page.
In such case, memory protector will guarantee the integrity
of the memory states under the suspicious operations.

Last but not least, when the VM is created, TinyChecker
will detect the I/O buffer in the VM. Memory protector will
protect all the VM memory except the I/O buffer using the
same mechanism as hypervisor metadata protection.

D. Silent Failure

Silent failure is the hardest failure to detect which bypass
the crash handler, memory protector checking and do not
trigger hypervisor hang. The outcome of the silent failure is
that the VM fails after a vmexit. Since the VM’s memory
except I/O buffer and the control data structure in hypervisor
have both been protected by memory protector, any failures
in memory can be detected. Thus, the reasons of VM failure
can be caused by either wrong VMCS state or wrong general
purpose registers. In order to protect the integrity of these
unchanged data, TinyChecker uses context-aware checking
to prevent the reserved VMCS state and registers against
being wrongly modified.

As described previous sections, TinyChecker always
knows what reason cause this vmexit and what the hy-
pervisor should do. When a vmexit happens, the access
recorder not only records this request, but also hashes the
VMCS and registers which should not be modified based
on the vmexit reason and its qualification information in the
VMCS. TinyChecker will check the hash of current VMCS
and registers just before vmresume is executed. If there is
a mismatch of current hash and saved hash, a silent failure
has taken place.

V. PRILIMINARY EVALUATION

A. Failure detection

Because TinyChecker is still in its early stage and some
functions are not fully completed, we only use register bit-
flip as the fault injection method. Other injection measures
such as memory injection and code injection will be our
future work. In the experiment, the injection will triggered
by a vmcall trapped into the injection handler. The injection
handler will randomly flip one bit in the registers and resume
to the hypervisor. In our experiment, all the injection errors
can be detected by TinyChecker.

B. Performance evaluation

We have evaluated the performance overhead of Tiny-
Checker and pure nested hypervisor by comparing them with
vanilla Xen. The version of vanilla Xen is 4.0.0, and the
version of Domain0 kernel is 2.6.31.13. The configuration
of VM is 1 VCPU, 1G memroy and 4G disk running debian
Linux.

The benchmarks include Kernel Build and dbench. Ker-
nel build is to measure the slowdown for CPU-intensive
workload. Dbench tests the slowdown of disk I/O-intensive
workload. It requires frequent interactions between the hy-
pervisor and a guest VM due to the frequent data exchanges.
As evaluated in prior systems (e.g., Turtles [12] and Cloud-
Visor [13]), this benchmark can be viewed as a worst-case
benchmark. All the benchmarks have been tested over five
times.

Compared with Xen, there are 1.27% and 2.76% slow-
down for nested virtualization and TinyChecker respectively
in kernel build. The main reason for the nested virtualization
slowdown is that there are twice as many vmexits as in
Xen. Among the source of overhead, hashing the VMCS
contributes to the other performance loss in TinyChecker.

Figure 3. Performance slowdown of TinyChecker on dbench

As shown in figure 3, dbench experiences relative small
performance slowdown. The TinyChecker throughput loss
in 1, 2, 4, 8 and 16 clients are 0.94%, 2.29%, 3.63%,5.03%
and 5.85%respectively.



VI. RELATED WORK

Microreboot [8] enables rebooting fine-grained applica-
tion components to recover from software failure. It provides
the basic idea that if rebooting a part of system can solve
the problem, the cost of recovery can be reduced.

RootHammer [6] can fast rejuvenate a virtualized system
by only rebooting the hypervisor without affecting VMs
running on it. Before rejuvenation, RootHammer will freeze
all VMs in memory which called on-memory suspend. Then,
hypervisor is quick reloaded without losing current state.
When the new instance of hypervisor has been initialized,
it will merge the reserved state and begin to run. RootHam-
mer has similar framework but different motivation with
TinyChecker. It focuses on the performance of hypervisor
microreboot and never considers hypervisor failures.

Otherworld [9] enable applications survival across kernel
failures. When a critical error is encountered, Otherworld
will microreboot a new kernel within a reserved memory
space, in order to reserve all the previous memory. Then,
all the application’s information, which involving open file,
signal handlers, shared memory IPC and so on, will be
restored based on the preserved memory. Compared with
Otherworld, TinyChecker has more clear recovery logic
since the interfaces between VM and hypervisor is much
simpler than interfaces between OS and process.

ReHype [7] introduces a mechanism for recovery from
hypervisor failures by booting a new instance of the hyper-
visor while preserving the state of running VMs. ReHype
can detect crash and hang failures happened in hypervisor
and repair the corruption by rebooting hypervisor. After
reboot, ReHype tries to resolve inconsistency in the system.
ReHype does not have the ability to detect all kinds of
failures and cannot recover from critical data corruption.
Furthermore, its detection and recovery modules have tightly
coupled with hypervisor which can be easily contaminated
or corrupted. Compared with ReHype, TinyChecker provides
protection for the critical data in memory and uses context-
aware checking to detect all kinds of failures. Furthermore,
using nested virtualization TinyChecker can be free from the
hypervisor failures and nearly zero modification should be
made to hypervisor.

CloudVisor [13] is a security monitor that leverages nested
hypervisor to protect the privacy and integrity of customers’
virtual machines in virtualized infrastructures. However,
CloudVisor mainly focuses on the security and privacy of
guest VMs instead of reliability.

VII. CONCLUSION

To protect VM against hypervisor failures, this paper
introduced TinyChecker, which uses nested virtualization to
enhance the system’s reliability. TinyChecker used context-
aware checking and on-demand checkpoint to detect failures
and recover the corrupted states of the system. All the four
types of failure defined in our paper may be detected and

handled by TinyChecker. Through performance evaluation,
we have shown that TinyChecker only incurs trivial perfor-
mance overhead, even for a worst-case benchmark.
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