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Abstract
Snapshot isolation (SI) is supported by most commercial
databases and is widely used by applications. However, check-
ing SI today—given a set of transactions, checking if they
obey SI—is either slow or gives up soundness.

We present viper, an SI checker that is sound, complete, and
fast. Viper checks black-box databases and hence is transpar-
ent to both users and databases. To be fast, viper introduces
BC-polygraphs, a new representation of transaction depen-
dencies. A BC-polygraph is acyclic iff transactions are SI, a
theorem that we prove. Viper also introduces heuristic prun-
ing, an optimization to accelerate checking SI by leveraging
common knowledge of real-world database implementations.
Besides vanilla SI, viper supports major SI variants including
Strong SI, Generalized SI, and Strong Session SI. Our experi-
ments show that given the same time budget, viper improves
over baselines by 15× in the workload sizes being checked.

CCS Concepts: • Information systems→Database design
and models; • General and reference→ Verification.
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1 Introduction
Databases provide concurrency control for client access and
guarantee isolation among clients: each client has a consistent
view of the data and concurrency anomalies are prevented. Be-
cause concurrency control is often delicate and complex, and
violations of isolation often lead to severe consequences [85],
checking the isolation level of a database’s outputs becomes
an important problem. The checking could be for different
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purposes: a database user auditing if the backend database
meets its claim [83], a database testing team testing if there are
bugs causing an isolation level violation [63], a deployment
team verifying if the database is configured correctly [85].

Many recent works [4, 34, 35, 40, 83] focus on checking
the strongest isolation level, serializability. In reality, there
is another isolation level that is also widely used: snapshot
isolation (SI). SI is supported in most production databases, in-
cluding Oracle, MongoDB [77], TiDB [58], SQLServer [10],
and YugabyteDB [15]. For some databases [11, 15], SI is their
default option.

A legitimate question then is: how can we (efficiently) check
SI? There are two main challenges to this question. First, the
database to be checked often needs to be treated as a black
box. Users often use cloud databases or proprietary databases
to which they have no source code level access. Even in the
cases where source code is available, such as in database
testing, black-box checking is still often preferred because it
reduces complexity in engineering and provides more flexibil-
ity. However, black-box checking is algorithmically hard [31].
All polynomial time checking solutions require knowing the
database’s internal schedule; that is, for two writes, which one
is ordered after the other. In black-box checking, however, we
do not have this information. As a consequence, existing black-
box SI checkers [30, 63] either handle only small workloads
(hundreds of transactions) or give up soundness (we elaborate
existing checkers in §2.3 and §8). To check for real-world
workloads and keep soundness, we need a checker with much
higher performance.

The second challenge is that SI, from the definition level,
is not as universally agreed as serializability. Perhaps affected
by its "implementation-before-definition" tradition [26], SI
has many variant implementations and definitions over the
years. The meaning of SI is different for different databases.
Even for the same database, different setups may have different
guarantees under SI [73]. This creates a challenge, but it also
gives the work a greater sense of relevance, as it can answer the
user’s question “which SI variant does this database provide”?

In this paper, we present viper, an SI checker that is sound,
complete, fast, and supports major SI variants. By sound and
complete, we mean that viper accepts iff the given workload
is SI (we prove this in §3.3). By fast, viper is three orders of
magnitude faster than the second fastest checker, for checking
a small workload of 400 transactions (all baselines timed out
for larger workloads, §7.1). Also, given the same time budget,
viper can handle >15× larger workloads than baselines.

The performance improvement of viper is inspired by re-
cent works that efficiently check the serializability of black-box
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databases. A major reason why checking serializability can be
faster than before is that the problem of checking serializability
can be converted to searching for an acyclic serialization graph
in a family of graphs. Then this searching problem can benefit
from the evolution and optimizations in SAT/SMT solvers
such as MonoSAT [25]. However, SI is different. When map-
ping SI to a serialization graph, SI does not directly translate
to simple acyclicity, but rather “cycles with certain edge pat-
terns are disallowed” [16] (§2.2). This keeps us from directly
applying existing techniques to checking SI.

To address this issue, viper introduces BC-polygraphs, a
new data structure that represents dependencies between trans-
actions. BC-polygraphs are designed for checking SI and cap-
ture two major characteristics of SI in a black-box setting: (i)
SI’s ordering specifications, for example, a transaction cannot
read from concurrent transactions; and (ii) the conceivable but
unknown scheduling in the black-box settings, for example,
users see two committed transactions writing the same key,
but the database may order either one before the other in its
internal scheduling. We define BC-polygraphs in section 3.1.

Crucially, we prove that a BC-polygraph is acyclic iff the
given transactions are SI (Theorem 5, §3.3). A noteworthy
bonus is a necessary and sufficient condition for SI, namely
an SI definition (Theorem 4, §3.3). This definition is more
intuitive than existing SI definitions (§3.4).

To further accelerate checking, viper introduces an opti-
mization called heuristic pruning. It is a heuristic approach
which works well for real-world workloads and databases.
Heuristic pruning is based on an observation that database
implementations hardly delay writes for long, or let reads re-
trieve really old snapshots (though SI allows so). Therefore,
viper assumes some of the unknown ordering of transactions,
and prunes impossible schedules. Of course, if the assumption
is false, viper needs to backtrack and update the assumption.
Nonetheless, if the assumption is correct, viper can finish
much faster due to a smaller search space.

Viper also supports range queries (§4) and major SI vari-
ants (§5), including Adya SI [16, 17], Generalized SI [49]
(an equivalence of ANSI SI [26]), Strong Session SI [43] (an
equivalence of Prefix-Consistent SI [49]), and Strong SI [43].
Checking different SI variants requires various ordering re-
strictions of transactions, which are abstracted as different
types of edges in BC-polygraphs. For example, viper uses
real-time edges for checking Strong SI and session-order edges
for checking Strong Session SI.

To summarize, the contributions of this paper are as follows.
• We introduce BC-polygraphs, a new data structure, for

black-box checking SI.
• We discover a new SI definition that has a nice parallel

to serializability, and is easier to remember.
• We design and implement viper, a black-box SI checker

that is sound, complete, and fast.

client  viper 
checker database

accept/reject

…

history
collector

clientif SI?

Figure 1. Viper’s architecture. The database is a black box. Inputs
to and outputs from the database are captured by history collectors (a
library within clients). Viper checks if the given inputs and outputs
(a history) are SI.

• Viper supports range queries and major SI variants by
extending BC-polygraphs with assorted edges.

By our experiments with five baselines and five benchmarks
(§7), viper outperforms baselines by much, both in terms of
checking time for the same workloads and the manageable
workload sizes (number of transactions) given the same time
budget. In particular, given the workload of 400 transactions
of a microbenchmark (BlindW-RW), viper finishes in 0.04
seconds while the second best checker (GSI+Z3, §2.3) finishes
in 115.98 seconds, a 2900× speedup. For the same benchmark,
viper finishes checking 10K transactions in 439.7 seconds. For
macrobenchmarks, viper finishes 5K-transaction workloads
of TPC-C, RUBiS, and Twitter respectively in 2.48, 17.39,
and 0.56 seconds (§7.2).

2 Checking SI, status quo
2.1 Problem statement
We target the problem of checking the snapshot isolation (SI)
of a black-box database. A checker solving this problem has
limited information. It only sees the inputs to and outputs from
the database, without any internal information. For example,
the checker does not know the order of two conflicting writes
to the same key because the return values do not reveal which
write happens first.
Why black-box checking? There are many scenarios where
black-box checking is desired or necessary. For example, cloud
database users cannot see the internal of their databases. If
they want to check SI, they have to do it the black-box way.
Similarly, administrators who host closed source and propri-
etary databases may not be able to fetch the wanted internal
information. Even if the database is open source, it might be
hard to instrument and get some extra hints from a distributed
database that implements Paxos/Raft and concurrency control
protocols, plus many optimizations. Meanwhile, black-box
checking is transparent to databases, and can check SI for all
these setups, while databases run as-is.
Viper setup. Figure 1 depicts viper’s architecture.

Clients send requests to a black-box database and receive re-
sponses. The database claims to be snapshot isolation (SI). But
clients want to check if the database indeed keeps its promise;
therefore, clients forward all the requests and responses to a
checker. The checker will answer the question: is this set of
requests and responses SI?



Each client request includes one or multiple operations.
There are eight operations: begin, commit, abort (which refer
to transactions), insert, delete, read, write, and range query
(which refer to keys).

All operations referring to keys are wrapped in transactions.
For each client, commit/abort operations always pair with
begin operations. History collectors enforce this logic.

History collectors is a library that logs the operations that
clients issue and the values that the database returns. They
work as a shim layer between clients and the database, and
are transparent to applications because they provide the same
key-value semantics. History collectors append a unique write
id (a unique hash) to each value, so that all written values are
unique. This will piggyback a piece of metadata to each value.

Checker receives logs from history collectors and summa-
rizes them as a history. History is the set of all operations
clients sent and the corresponding return values from the data-
base. The checker then answers the question—is this history
SI? If yes, it accepts; otherwise, it rejects. Answering this ques-
tion is computationally challenging because the underlying
problem is NP-Complete [31].

2.2 SI definitions
A brief history. Snapshot isolation (SI) was first officially
introduced by Berenson et al. [26] in 1995. Intuitively, SI
requires that all reads in the same transaction read from a
consistent database snapshot, and if there are concurrent writes
to the same key, only one can commit; others need to abort.

Later, many SI variant proposals arose, including Gener-
alized SI, Prefix-Consistent SI [49], Strong SI, and Strong
session SI [43], just to name a few. The definitions until then
were descriptive and implementation-based, hence were hard
to use for reasoning if a history is SI. Meanwhile, in 1999,
Adya gave a graph-based SI definition in his thesis [16] which
clarified multiple isolation levels and summarized their rela-
tionships. The SI definition is yet based on the full knowledge
of the database—it requires the internal interleaving (called
version order) of transactions.

In 2015, Cerone et al. [37] gave an axiom-based definition
of SI and later proved its equivalence to Adya’s definition [39].
Similarly, this definition still requires internal information—
the order of conflicting transactions (which is defined as a
relation called AR to arbitrate conflicts). Most recently, in
2017, Crooks et al. [42] proposed a client-centric definition of
SI, which was the first definition treating databases as black
boxes. Because of the client-centric setting, they proved that
some SI variants are equivalent from a client’s perspective,
and provided a hierarchy of these SI variants [42, Figure 4]:

Strong SI ⊂ (PC-SI ≡ Strong Session SI)
⊂ (GSI ≡ ANSI SI) ⊂ Adya SI

where ≡ indicates equivalent; and SIA ⊂ SIB means that his-
tories accepted by SIA are a subset of those by SIB. In other
words, SIA is “stricter” than SIB.

Adya SI definition. Next, we introduce Adya’s SI defini-
tion [16, 17]. Adya SI is the most widely used definition in
SI checking [7], and is defined on start-ordered serialization
graphs (SSGs) [16]. SSGs are directed graphs in which nodes
are transactions and edges are dependencies between trans-
actions. There are four types of edges (Ti, Tj are transactions
and x is a key):

• read-dependency edge (Ti
wr(x)−−−−→ Tj): Tj reads x’s value that

Ti writes.

• write-dependency edge (Ti
ww(x)−−−−→ Tj): Tj overwrites x’s

value that Ti writes.

• anti-dependency edge (Ti
rw(x)−−−−→ Tj): Ti reads a version of x,

and Tj writes the next version.

• start-dependency edge (Ti
start−−−→ Tj): the timestamp of Ti’s

commit is earlier than Tj’s begin timestamp. The timestamps
can be either wall-clock timestamps or logical timestamps.

Notice that, in a black-box database setting, write-
dependencies, anti-dependencies, and start-dependencies are
unknown to clients because databases do not reveal internal
execution order. With SSGs, we define SI below.

Definition 1 (Adya SI definition). Given a time-precedes or-
der (a total order) of the begin/commit timestamps of transac-
tions, a history is snapshot isolation iff its start-ordered serial-
ization graph (1) does not have cycles consisting of only start-
dependency, read-dependency and write-dependency edges,
(2) does not have cycles with exactly one anti-dependency
edge, (3) proscribes “G-SIa”: there is a read-dependency
or write-dependency edge from Ti to Tj but without a start-
dependency edge from Ti to Tj.

Definition 1 is a simplification of the original Adya SI [16,
Page 81, Theorem 2]. We omit range query (predicate depen-
dencies), which we will add back in section 4.

Other common SI variants—including GSI, Strong SI, and
Strong Session SI—are stricter than Adya SI. Besides require-
ments in Definition 1, GSI and Strong SI enforce that a read
must read from transactions that commit in real time before
the read transaction. In addition, Strong SI requires all reads
read from the most recent snapshots in real time, and GSI
allows reading from old snapshots. Strong Session SI requires
all reads in a session read from the most recent snapshots in
the same session in real time.
2.3 Checking SI, status quo
Existing SI checkers. People build several SI checkers with
different setups. dbcop [30] is an isolation level checker that
can check SI (specifically, Strong Session SI [43]) for black-
box databases, the same setup as viper. It runs two algorithms
for checking SI. One is an SI-checking algorithm introduced
by Biswas and Enea [31]; the other uses MiniSAT [47], a SAT
solver, plus a SAT encoding according to Cerone’s SI defi-
nition [37]. Elle [63] is another black-box checker. Different



from dbcop and viper, Elle requires atomic update operations
that reveal write order in databases. For example, by using
the “append” operation, Elle can infer the write (i.e., append)
order to a list. Elle checks Adya SI.

Ouyang et al. [73] build a white-box SI checker for verifying
SI of MongoDB [77]. They use SI of Cerone et al. [37], and
the checker requires full knowledge of the database.
Natural baselines: SI encoding + SAT/SMT solvers. Be-
yond existing checkers, there are natural baselines for check-
ing SI. One approach is to solve the SI-checking problem by
SAT/SMT solvers [29]. This makes sense because many hard
problems in practice can be solved by using solvers [23, 36,
61, 83], due to remarkable advances of SAT/SMT solvers [14,
24, 44, 47, 72, 81]. Indeed, this is an established approach
used by prior works to check serializability [4, 79, 83]. We
implement three baselines—named GSI+Z3, ASI+Z3, and
ASI+Mono—with different encodings and solvers. We will
elaborate in section 6.
Challenge. The major technical challenge of checking SI is
performance. For a small history of 400 transactions with 50%
read-only transactions and 50% write-only transactions (a
benchmark BlindW-RW, §7), all baselines and existing black-
box SI checkers mentioned above (Elle excluded, because it
requires write order being manifested) take more than 116
seconds to finish. Viper is designed to tackle this challenge.

3 Checking SI with BC-polygraph
To accelerate checking SI, we propose BC-polygraphs (mean-
ing Begin and Commit polygraphs). BC-polygraphs are a
new transaction dependency representation that captures two
pieces of critical information: (1) SI’s ordering specifications,
for example, a transaction cannot read from concurrent trans-
actions; and (2) the “conceivable-but-unknown” scheduling;
for example, if two committed transactions write the same
key, one has to commit before the other begins, but clients do
not know which transaction commits earlier because of the
black-box database setup.

In the following, we first introduce BC-polygraphs (§3.1),
and how to check SI using BC-polygraphs (§3.2). Then we
show that our SI-checking algorithm is sound and complete
with a proof sketch in section 3.3. Finally, we introduce an
optimization that works well for real-world workloads (§3.5).

3.1 BC-polygraph
We start with a setup where all the dependencies (§2.2) are
known (this is a white-box setup). In such a case, we can
construct BC-graphs (a variant of BC-polygraphs) from a
start-ordered serialization graph (SSG).

Definition 2. Given a history h and its SSG(h), a BC-graph
is constructed as follows:
1. for each node (committed transaction) in SSG(h), create

two nodes Bi and Ci;

2. for each read-dependency and write-dependency edge
Ti → Tj in SSG(h), create an edge from Ci → Bj; for each
anti-dependency edge Ti → Tj, create an edge Bi → Cj.

Notice that BC-graphs do not have to be defined on SSGs. We
use this constructive definition to highlight the relationship
between SSGs and BC-graphs.

Next, we move to define BC-polygraphs in the black-box
setup where write-, anti-, and start-dependencies are unknown.
Intuitively, a BC-polygraph can be considered as a combina-
tion of a BC-graph and a set of constraints (defined below)
that captures the unknown but possible edges.

Consider a history: T1 : w(x, 1), T2 : w(x, 2), T3 : r(x, 1)
(values are unique and we omit begins/commits for simplic-
ity). From the history, we can conclude T1

wr(x)−−−−→ T3 because
T3 reads x from T1, but we don’t know the order between T1
and T2 (conflicting writes) and between T2 and T3 (a conflict-
ing read and write pair). To capture these conceivable-but-
unknown dependencies, BC-polygraphs define constraints: a
set of bi-edges each of which is an edge pair ⟨v→ u, u→ w⟩
such that one and only one edge appears in a BC-graph. Fig-
ure 2 depicts a BC-polygraph for the example history.

W2(x=2)

W1(x=1) R3(x):1

B1

B2

B3

C2

C1 C3

read-dependency

anti-
dependency

write-
dependency

wr(x)

rw(x)
ww(x)

Figure 2. A BC-polygraph example. Nodes represent begin and com-
mit operations (denoted as Bi and Ci for Ti). There are three trans-
actions hence six nodes in this BC-polygraph. A read-dependency
edge C1 → B3 indicates T3 reading from T1. Constraints are in-
dicated by dotted edges connected by an arc. There are two con-
straints: ⟨C1 → B2, C2 → B1⟩ (indicating no two concurrent writes
to the same key; one has to commit before the other begins) and
⟨B3 → C2, C2 → B1⟩ (indicating R3 either reads from a snapshot
before W2 or W2’s value has been overwritten).

BC-polygraphs have two types of edges that are known: (i)
the edges starting from a transaction’s begin to its own commit,
called intra-txn dependencies, which reflect the program order;
and (ii) the read-dependency edges pointing from a commit
of wtx to the begin of rtx, where rtx reads from wtx. This
represents read-dependencies and indicates that SI only allows
a read reading from committed transactions.

BC-polygraphs capture write-dependencies and anti-
dependencies as constraints. In particular, write-dependency
edges point from commits to begins; anti-dependency edges
however point from begins to commits. The begin-to-commit
order of an anti-dependency indicates that a transaction
should not read from a concurrent transaction, as defined in SI.
(By concurrent transactions, we mean these transactions all
start before any commits.) We define BC-polygraphs below.



Definition 3 (BC-polygraph). A BC-polygraph P =

(V , E, C) is a directed graph (V , E) (called the known
graph) together with a set of edge pairs C (called constraints).
• V consists of begin operations and commit operations for

all committed transactions.
• E includes edges of intra-txn dependencies and read-

dependencies.
• C is a set of constraints; each constraint contains two edges

(either a write-dependency and an anti-dependency or two
write-dependencies), only one of which should exist.

A BC-polygraph can be regarded as a superposition of many
directed graphs. By choosing one edge in each constraint of
a BC-polygraph pg, we can get a directed graph g. We call
such g is compatible with pg. In particular, (i) g has the same
nodes as pg, and (ii) g includes all edges in pg’s known graph,
and (iii) g contains one edge in each constraint of pg.

We say a BC-polygraph is acyclic if there exists a directed
graph of the BC-polygraph that is acyclic. Crucially, a history
is SI iff its BC-polygraph is acyclic. We prove this as a theorem
(Theorem 5) and will show a proof sketch in section 3.3.
Detecting SI violations: a long-fork example. We use
an example to demonstrate how BC-polygraphs detect SI
violations. Consider a history, T1 : w(x, 1), w(y, 1), T2 :
r(x, 1), w(x, 2), T3 : r(y, 1), w(y, 2), T4 : r(x, 2), r(y, 1), T5 :
r(x, 1), r(y, 2) (borrowed from [41, §3.2]). It is known as a
long fork [80], which is not SI. In this history, transactions
update two disjoint sets concurrently which makes the states
fork, and the states are not merged back after they commit.
Figure 3 depicts the history’s BC-polygraph. (We omitted
some irrelevant constraints for simplicity.) No matter how
one picks edges in the two constraints, there will always be
cycles.

B1 B3

B2

C3

C1

C2

B4

B5

…

…

wr(x)

wr(y)

wr(x)

wr(y)

wr(y)

wr(x)

ww(x)

ww(y)

rw(x)

rw(y)

Figure 3. The BC-polygraph of the long fork example. There are two
constraints indicated by red and blue dotted lines and arcs. We denote
dependencies (§2.2) on edges. There is always a cycle whichever two
constraint edges we choose.

3.2 Checking SI
Figure 4 depicts viper’s SI-checking algorithm. There are
three major steps. First, viper constructs a BC-polygraph from
a given history. Second, viper encodes the BC-polygraph
into SMT clauses. And finally, viper runs MonoSAT [25] to
solve the clauses. MonoSAT is an SMT solver that has native
supports for graph properties (for example, acyclicity).

Constructing BC-polygraph. Compared with existing SI
checkers and baselines, viper’s major difference (and advan-
tage) is using BC-polygraphs. Viper traverses the history and
builds a BC-polygraph by adding begins and commits as nodes
to the BC-polygraph (line 28, Figure 4). After that, viper adds
known edges, including intra-txn dependency edges (line 29,
Figure 4) and read-dependency edges (line 34, Figure 4). Fi-
nally, it adds constraints with regard to write-dependencies
(line 46, Figure 4) and anti-dependencies (line 50, Figure 4).

Viper can build a BC-polygraph with time complexity of
O(n2), where n is the number of read and write operations in
the history. O(n2) comes from line 42–50 in Figure 4. Seem-
ingly, this is a triple nested loop. However, the outermost loop
(line 44, Figure 4) and the innermost loop (line 48, Figure 4)
together have an O(n) complexity because the inner loop is
about the reads (rtx in Figure 4) of the outer loop’s writes
(vwtx1 in Figure 4)—the two loops combined are all read
operations (whose number is < n) in this history.
Encoding and solving. Viper encodes the BC-polygraph into
SMT clauses (line 12, Figure 4) by using SMT graph abstrac-
tion. In particular, for each edge, viper uses a boolean variable
to represent if the edge exists: true means existence (for ex-
ample, line 19, Figure 4); false means otherwise. To encode
constraints, viper XORs (exclusive OR) the constraint’s two
edges (line 22, Figure 4): either one edge’s boolean is true
or the other; one and only one boolean must be true. Finally,
viper runs MonoSAT to check if there exists any assignment to
edges such that the BC-polygraph is acyclic. If so, the history
is SI and viper accepts; otherwise, viper rejects.

3.3 Correctness proof
In this section, we provide proof sketches to our claim: a
history is SI iff its BC-polygraph is acyclic (§3.1) which is
Theorem 5. This theorem is the core of viper’s SI-checking
algorithm (Figure 4). The full proof can be found in our tech-
nical report [13].

Before proving the main Theorem 5, we need a helper the-
orem that covers a simpler setup—white-box checking when
the write-dependencies and anti-dependencies are known.
Theorem 4. Given a history h and all write- and anti-
dependencies h’s BC-graph g is acyclic ⇐⇒ h is SI.

Proof. “⇒”. Since g is acyclic, by topological sorting g, we
can have a total order of begins and commits, ŝ. Next, we
can build a SSG(h) according to ŝ that proscribes G-SIa by
construction. We can also prove that SSG(h) has no cycles
with 0 or 1 anti-dependency edge because any such cycle will
contradict with ŝ (details omitted). By Definition 1, h is SI.

“⇐”. If h is SI, by Definition 1, SSG(h) can be either (i)
has no cycles or (ii) has cycles with more than one anti-
dependency edge. For case (i), by Definition 2, BC-graph
does not introduce new cycles with respect to the SSG(h),
hence g is also acyclic. For case (ii), we claim that all cycles
in SSG(h) must have consecutive anti-dependency edges. (we



1: procedure CheckSI(history)
2: g, cons← CreateBCPolygraph(history) // line 25
3: encoding← ConstructEncoding(g, cons) // line 12
4: ret←MonoSAT.solve(encoding) // run MonoSAT
5: if ret is unsat:
6: return reject
7: else:
8: return accept
9:

10:
11:
12: procedure ConstructEncoding(g, cons)
13: lits← empty list
14: ĝ←MonoSAT.graph() // an empty MonoSAT graph
15: for node n in g: // construct nodes
16: ĝ.Nodes += n
17: for edge (n1, n2 ) in g: // construct known edges
18: ĝ.Edges += (n1, n2 ) // add symbolic edges
19: lits += ( (n1, n2 ) = True) // the edge exists
20: for ⟨ (n1, n2 ) , (n2, n3 ) ⟩ in cons: // encode constraints
21: ĝ.Edges += { (n1, n2 ) , (n2, n3 ) }
22: lits += (n1, n2 ) XOR (n2, n3 ) // one of the edges exists
23: lits += ĝ.acyclic()
24: return lits

25: procedure CreateBCPolygraph(history)
26: readfrom← Map{⟨Key, Tx⟩ → Set⟨Tx⟩} // map a write to its readers
27: for transaction tx in history: // create the known graph
28: g.Nodes += {tx.begin, tx.commit}
29: g.Edges += (tx.begin, tx.commit) // intra-txn dependency
30: for read operation rop in tx:
31: // if read from an aborted transaction, reject
32: if rop.read_from_tx not in history: reject
33: // add read-dependency (we assume a txn writes a key at most once)
34: g.Edges += (rop.read_from_tx.commit, tx.begin)
35: readfrom[ ⟨rop.key, rop.read_from_tx⟩ ] += tx
36:
37: cons← empty list // create constraints
38: writes← Map{Key→ Set⟨Tx⟩} // map a key to its writers
39: for transaction tx in history:
40: for write operation wrop in tx:
41: writes[wrop.key] += tx
42: for all key in writes:
43: key_writes← writes[key]
44: for wtx1 in key_writes:
45: for wtx2 in key_writes ∧ wtx2 ≠ wtx1:
46: cons += ⟨ (wtx1.commit, wtx2.begin) , (wtx2.commit, wtx1.begin) ⟩
47: reads← readfrom[ ⟨key, wtx1 ⟩ ]
48: for rtx in reads:
49: // wtx2 commits either after rtx begins or before wtx1 begins
50: cons += ⟨ (rtx.begin, wtx2.commit) , (wtx2.commit, wtx1.begin) ⟩
51: return g, cons

Figure 4. Viper SI-checking algorithm.

omit the proof of this claim.) By the above claim, any cycle
in SSG(h) has at least two consecutive anti-dependencies, say
T1

rw−−→ T2
rw−−→ T3. This translates to B1

rw−−→ C2 and B2
rw−−→ C3

in a BC-graph, where C2 ̸→ B2. Thus, SSG(h)’s cycles are not
cycles in the BC-graph, meaning the BC-graph is acyclic. □

Next, we prove our main theorem that viper’s SI-checking
algorithm (Figure 4) is sound and complete, namely, a history
is SI iff its BC-polygraph is acyclic.

Theorem 5. Given a history h, its BC-polygraph is acyclic
⇐⇒ h is SI.

Proof. “⇒”. Given the BC-polygraph is acyclic, there exists
a compatible graph g that is acyclic. By Theorem 4, h is SI.
“⇐”. By Theorem 4, h is SI implies there exists a BC-graph g
that is acyclic. By topological sorting g, we can get a total order
of nodes, ŝ. We can prove that for each constraint, one edge
obeys ŝ and the other conflicts with ŝ (proof details omitted).
Now, by choosing the edges that obey ŝ in constraints, we
construct a compatible graph g such that the g’s edges are a
subset of ŝ; this implies that the BC-graph g is acyclic; thus,
the corresponding BC-polygraph is acyclic. □

Notice that different from BC-graphs, BC-polygraphs do
not have known write-dependencies and anti-dependencies.
BC-polygraphs assume they exist but do not know them. In-
deed, the SMT solving phase in Figure 4 is to search for a
set of write-dependencies, anti-dependencies, and timestamps
such that h is SI.

3.4 Theorem 4 revisited
We want to highlight that Theorem 4 gives a necessary and
sufficient condition for SI. In other words, Theorem 4 is an
SI definition. Moreover, Theorem 4 has a neat parallel to se-
rializability. Below we put the canonical way of checking
serializability (short as SER) using serialization graphs (short
as SER-graphs) and checking SI by Theorem 4 side by side,
and highlight differences by underlines.

checking SER: build a
SER-graph in which nodes
are transactions and edges
are read-dependencies,
write-dependencies, and anti-
dependencies; the graph is
acyclic iff the history is SER.

checking SI: build a
BC-graph in which nodes
are begins/commits and edges
are read-dependencies,
write-dependencies, and
anti-dependencies; the graph
is acyclic iff the history is SI.

Compared with the state-of-the-art SI definitions (like Adya
SI, Definition 1), Theorem 4 is more intuitive and easier to
remember, especially for people who have learned SER.

In fact, this parallel is deeper than their appearances. Here
is one way to think of this parallel: given a history h, checking
SER is searching for a total order of transactions (call it ŝSER),
whereas checking SI is searching for a total order of begins and
commits (call it ŝSI). If h is SER, such ŝSER exists that sequen-
tially executing transactions according to ŝSER reproduces h; if
h is SI, such ŝSI exists that sequentially executing begins with
all reads (in this transaction) and commits with all writes (in



this transaction) according to ŝSI reproduces h. The ŝSER exists
iff the SER-graph is acyclic; The ŝSI exists iff the BC-graph
is acyclic. Notice that write-dependencies prevent conflicting
concurrent writes in ŝSI ; read-dependencies prescribe reading
from committed transactions in ŝSI ; and anti-dependencies
prevent reading from concurrent transactions in ŝSI .

3.5 Heuristic pruning, an optimization
In this section, we introduce an optimization, called heuris-
tic pruning, that incorporates some common knowledge from
databases. Heuristic pruning significantly accelerates SI check-
ing, sometimes by 36× in our experiments (RUBiS, §7.2).

We observe that in practice, an SI database implementation
rarely delays a write for a “long” time or let a read fetch a
“really old” snapshot (though SI allows both). Our idea is to
heuristically assign orders to those transactions that are “far”
from each other because databases are unlikely to reorder
them. By adding these hypothetical orders as heuristic edges
in BC-polygraphs, viper can prune constraints that violate
these edges, hence reduces the number of constraint decisions
to make and accelerates the SI checking. Figure 5 is an illus-
tration of heuristic pruning.

B1

B2

B3

C2

C1

C3

X

Figure 5. An example of heuristic pruning. There are three transac-
tions: (B1, C1), (B2, C2), and (B3, C3). Solid edges are known edges;
dotted edges connected by an arc is a constraint; and the dash-dotted
edge (in red) is a heuristic edge.
Assume the heuristic edge exists. Viper then can prune the constraint
by adding B3 → C2 and discarding C2 → B1 (the crossed out edge)
because otherwise by choosing C2 → B1, there will be a cycle.

Viper implements heuristic pruning as follows. It first topo-
logical sorts the known graph of the BC-polygraph, ignoring
the constraints, and gets a total order of begin/commit nodes
as ŝ. Then, viper inserts heuristic edges from commit nodes
to begin nodes that distance by k nodes in ŝ, where k is a
parameter. If viper accepts, the history is SI. If viper rejects,
we double k until k = #nodes (namely, no heuristic edges).
This optimization works for histories that are SI. For non-SI
histories, heuristic pruning plays a negative role in perfor-
mance because viper needs retry multiple times to confirm
the results. (We describe more implementation details in §6.)

4 Supporting range query
Adya SI definition supports range queries (predicate depen-
dencies). In this section, we extend viper to support them.

Range queries are widely used in applications. Viper sup-
ports one type of range queries that are key-based, namely the
range refers to keys (instead of values). For example, assume a
user uses string keys and considers alphabetical order; a range

query RAN (“a”, “b”) should return all existing keys that locate
in-between key “a” and “b” (regarding alphabetical order).
Challenge. To check SI, range queries have two properties that
need to be verified. First, all returned keys must be within the
range, which is easy to check. Second, all non-returned keys
in the range—potentially many—must be nonexistent. This
property is hard to check when intertwined with concurrent
transactions. We illustrate the challenge by an example.

INS1(“y”=1) DEL2(“y”) INS3(“y”=4) DEL4(“y”)

RAN5(“x”,“z”):{}

: “y” does not exist

Figure 6. A range query example for non-existing “y”. There are five
transactions (begin/commit labels omitted): two transactions insert
key “y” (INS1 and INS3); two transactions delete key “y” (DEL2 and
DEL4); and one transaction issues a range query (RAN5) for keys
between “x” and “z” (including “y”) and gets nothing “{}” (“y” is
nonexistent) as the return value.
The return value implies three possible cases when RAN5 begins:
(1) before INS1 commits (the dotted black edge), (2) after DEL2
commits and before INS3 commits (indicated by two dashed red
edges), or (3) after DEL4 commits (the dash-dotted blue edge).

Figure 6 depicts a case that a range query RAN5 (“x”, “z”)
does not return key “y”, indicating “y” does not exist in the
database when RAN5’s transaction begins. The question how-
ever is: there are three periods in history that “y” is nonexis-
tent (marked by shaded rectangles in Figure 6); which period
does RAN5 fall into? Moreover, notice that “y” is just one non-
returned key. There are potentially many non-returned keys
(for example, “ya”, “yab”, “yabc”). All of them have their own
versions of “Figure 6”.
Tombstones. Viper addresses this challenge by tomb-
stones [22, 65, 69, 71, 76, 78]. Tombstones are special strings
that viper uses as placeholders for deleted keys. In particular,
instead of truly deleting a key from databases, viper writes a
tombstone to the key, which is enforced by history collectors
(§2.1) and is transparent to users. Similarly, when inserting
a key, viper first reads the key; if the return value is either
NULL (the key doesn’t exist in the database) or a tombstone
(the key has been deleted), viper updates the key and returns.

With tombstones, a range query will return tombstones
associated with the keys that should have been deleted. By
studying these tombstones, viper knows which transactions
delete the keys (because tombstones contain unique write
ids). Hence, the checker can figure out the ordering of in-
serts, deletes, and range queries; and avoids the ambiguity in
Figure 6. Viper’s checker handles these operations (insert-
s/deletes/range queries) as if they are normal reads and writes.

Tombstones have been used by many other systems [22,
65, 69, 71, 76, 78]. Different from prior usages, viper uses



tombstones for pinpointing conflicting dependencies between
range queries and inserts/deletes.
Pros and cons. Using tombstones has pros and cons. The
pro is that it significantly accelerates SI checking for range
queries. The cons are threefold. First, using tombstones may
harm the performance of aggregation operations (e.g., join)
because keys are no longer truly deleted. Second, tombstones
also waste disk space, which might be a concern for workloads
with many temporary data. Finally, if using viper for black-
box testing, tombstones skip testing the actual implementation
of inserts/deletes, which may reveal fewer concurrency bugs.

5 Checking SI variants
So far, viper’s SI-checking algorithm (§3.2) checks Adya
SI. Yet, SI has many variants, and Crooks [41] provides a
clear hierarchy of some major SI variants (§2.2). In the follow-
ing, we extend viper to check major SI variants: Generalized
SI [49], Strong SI [43], and Strong Session SI [43] (≡ Prefix-
Consistent SI [49]). Note that we follow the interpretation
of Crooks et al. [42] for SI variants, in particular, whether
“timestamps” are wall-clock time or logical timestamps in
these variants.
Generalized SI and Strong SI. Generalized SI (GSI) and
Strong SI requires real-time constraints. They both require
that a transaction Ti must read from transactions that commit,
in real time, before Ti begins. In addition, Strong SI requires
all reads read from the most recent snapshots in real time,
whereas SI allows reading from old (in real time) snapshots.

To check GSI and Strong SI, viper needs wall-clock times-
tamps. We assume clients who together check SI belong to
the same organization and run some time synchronization
protocols, for example, NTP [8] or PTP [48]. Therefore, the
clock drift between clients is bounded. Viper assumes a clock
drift threshold which is the maximum possible time differ-
ence between clients (this is a parameter in viper). However,
if clients’ actual clock drift exceeds the threshold (viper’s
assumption is false), viper may reject histories that are SI
(viper then fails completeness).

With the bounded clock drift assumption, viper can check
GSI and Strong SI. For each begin and commit, viper’s history
collectors record a local wall-clock timestamp. We say one
event Ei happens before another event Ej when Ei’s timestamp
is smaller than Ej’s by at least a clock drift threshold.

When checking Strong SI, for a pair of nodes (Ni, Nj) that
Ni happens before Nj, viper’s checker adds a real-time edge
from Ni to Nj; Ni and Nj can be begin or commit but cannot
be both begins. This is a reminiscence of the time-precede
order in Adya SI definition, and start-dependency edges in
start-ordered serialization graph [16, Page 79, Definition 20].

GSI relaxes Strong SI by not having to read from the most
recent snapshots. So, viper’s checker will ignore real-time
edges from commits to begins; such edges represent that trans-
actions must observe happened-before commits in real time.

Viper component LOC written/changed

History collector
history recording 382 lines of Java
database adapters 1427 lines of Java
Jepsen test 901 lines of Clojure

Viper checker data structures and algos 2977 lines of Python
history parser and others 964 lines of Python

Figure 7. Components of viper implementation.

Instead, for checking GSI, viper only adds real-time edges
from begins/commits to commits. These edges capture concur-
rent transactions: if a transaction Ti begins before Tj commits
and vice versa, then Ti and Tj are concurrent transactions. With
begin-to-commit real-time edges for concurrent transactions,
a transaction can no longer read from a concurrent transaction
(in real time), hence must read from an older snapshot.

Note that with the bounded clock drift assumption, viper’s
checking of GSI and Strong SI is complete but not sound
because viper may consider a real-time ordering violation as
a clock drift and accepts a non-SI history.
Strong Session SI (≡ Prefix-Consistent SI). Strong session
SI requires clients to see the same transaction order in the
same session. In other words, one client will always see the
same history prefix (hence prefix consistent). This SI variant
prohibits “transaction inversion” [43]: a client commits an
update but cannot see the update in a following read.

In viper, we support sessions (as in Strong Session SI) in
the granularity of client-database connections, for example,
JDBC connections. We assume sessions are synchronous;
clients need to commit or abort a transaction then begin the
next transaction. Viper captures transaction session orders
by history collectors. The collectors record each session’s
transactions into an independent file in their issuing order.

Users can configure viper to check Strong Session SI. If so,
viper’s checker adds session-order edges and begin/commit-
to-commit edges (identical to GSI) to the BC-polygraph. The
session edges are edges pointing from previous transactions
(commit nodes) to latter transactions (begin nodes) according
to the transaction sequence in each session. The remaining
SI-checking algorithm (§3.2) is unchanged.

If viper accepts, it guarantees Strong session SI because
there exists some acyclic BC-graph that satisfies session-order
edges; by topological sorting the BC-graph, one can get a
schedule of begins and commits that obeys session orders. On
the contrary, if viper rejects, no such acyclic BC-graph exists,
hence no valid schedule that obeys Strong Session SI.

6 Implementation
Viper’s checker is written in Python, and history collector is
written in Java (clients are written in Java). Viper’s collectors
are built on top of Cobra’s history collectors. Figure 7 shows
viper’s components.
History collector. As mentioned earlier (§2.1), history col-
lectors are implemented as a library on the client side. They



record operations issued by clients and results returned by
the database. In addition, collectors also assign each write
with a unique write id. These ids allow viper’s checker to
associate read values with their corresponding writes. If the
database (accidentally or intentionally) tampers with write
ids or replaces one write id to another, viper can detect this
by matching parameters of the writes (logged directly on the
client side) and return values of the reads; then viper rejects.

Collectors also implement the tombstones for deletes (§4).
As a library, collectors provide a delete wrapper for clients.
The wrapper replaces a delete operation with a set of opera-
tions that read-modify-write the “deleted” key to a tombstone
plus a unique write id. In this case, range queries will re-
turn “deleted” keys with tombstones. According to write ids,
viper’s checker knows which transactions delete these keys.
Genesis transaction. To handle reading non-existing keys,
we created a genesis transaction, which is a virtual transaction
that commits before any transaction in the history. All reads
to a key that happen before the key’s first write are considered
to read from the genesis transaction.
Natural baselines. Section 2.3 introduced three natural
baselines. The baselines are designed and implemented by
us. The core encodings however are borrowed from existing
work, for example, encoding graph acyclicity using SAT/SMT
clauses [52, 53, 59]. We elaborate on these baselines below.

GSI+Z3: we encode Generalized SI [49] assuming logi-
cal timestamps using SMTs, and use Z3 as the solver. First,
we assign each begin and commit with a unique integer id,
then define a happen-before relation (<) over these ids. For
example, a transaction begin must happen-before its commit
(Begin(Ti) < Commit(Ti)). Then, we assert GSI rules ac-
cording to the paper, including GSI read rule [49, D1] and
GSI commit rules [49, D2]. For example, the rule of no con-
current modifications to the same key can be encoded as, if
two transactions write the same key (Ti and Tj), one’s com-
mit must happen before the other’s begin (Commit(Ti) <

Begin(Tj) ∨ Commit(Tj) < Begin(Ti)), If Z3 can find a legal
happen-before relation for all begins and commits, then the
history is SI; otherwise, it is not SI.

ASI+Z3: we encode Adya SI (Definition 1) as SMTs and
solve them by Z3. First, we assign unique integers to trans-
actions (nodes in the serialization graph), and define two re-
lations over these integers (the “Function” in Z3): one for
read-dependencies and write-dependencies (call it Rel0), and
the other for anti-dependencies (call it Rel1). We encode cy-
cles by using transitive closure (node reachability). Then, we
encode timestamps by assigning each begin/commit a times-
tamp (an unsigned integer), asserting that timestamps respect
dependencies, and enforcing a total order of these timestamps.

Finally, we assert that there is no cycle for Rel0 and there
are no cycles that have exactly one Rel1 edge. If Z3 is able to
find a satisfiable solution, then the history is SI; otherwise, it
is not SI.

ASI+Mono: since MonoSAT natively supports many graph
properties, we leverage those to encode Adya SI. We use
the graph abstraction provided by MonoSAT for the serial-
ization graph in Adya SI. We assign edges with weights: 0
for read-dependency and write-dependency edges, and 1 for
anti-dependency edges. Similar to Z32+ASI, we use bitvec-
tors (bounded integers) as timestamps and enforce their total
order. In addition, we assert that timestamps respect depen-
dencies. Then we leverage node distance, a primitive provided
by MonoSAT, to encode certain cycles. We assert that no
node can reach itself by a path (in fact, this is a cycle) with
weights ≤ 1, indicating that there is no cycle with 0 or 1
anti-dependency edge (hence is Adya SI).

A note on why viper runs faster. The core observation of
viper is that SI requires a total order of begins and commits,
instead of transactions. Therefore, the abstraction of histories
should not base on serialization graphs (where transactions
are atomic nodes) but on BC-graphs which capture the depen-
dencies between begins and commits. The benefit of this ab-
straction in implementation is that viper’s checking algorithm
runs faster due to efficient primitives (e.g., graph acyclicity)
and fewer constraints.
Viper checker optimizations. Viper implements heuristic
pruning (§3.5) by topological sorting the known graph of
BC-polygraphs to get a total order of nodes, then later uses
this to infer unknown order. Usually, there are many valid
topological sort results, but not all of them are equally useful.
The useful ones are those similar to the (unknown) database
execution schedule. To produce high-quality topo-sort results,
viper implements topological sort using breadth-first search
(BFS), and additionally sorts nodes in the same BFS layer by
their orders in session logs. Both of these are heuristics to
mimic database’s execution schedule in practice. Viper also
integrates two optimizations—combining writes [83, §3.1]
and coalescing constraints [83, §3.2]—from a serializability
checker, Cobra. The two optimizations reduce constraints for
workloads with read-modify-writes and many reads.

7 Experimental evaluation
The questions we answer in this section are:
• What is viper’s performance, and how do these compare

to existing checkers and natural baselines?
• How do viper’s components contribute under different

workloads and different setups?
• Can viper detect known real-world SI violations?

Baselines. There are five baselines that we experiment with.
• Elle: an SI checker that requires revealing write order (in

its “sound mode”; we explain its two modes in §8). Elle
checks Adya SI.
• GSI+Z3: a rule-based SMT encoding of Generalized SI,

using Z3 as the solver. (§6)
• ASI+Z3: a rule-based SMT encoding of Adya SI, using Z3

as the solver. (§6)



• ASI+Mono: a graph-based SMT encoding of Adya SI, us-
ing MonoSAT as the solver. (§6)
• ASI+Mono+Opt: the baseline ASI+Mono plus Cobra’s two

optimizations [83, §3.1 and §3.2].
Benchmarks and workloads. We use five benchmarks, two
microbenchmarks (V-BlindW and V-Range) and three mac-
robenchmarks (C-TPCC, C-RUBiS, and C-Twitter). The three
macrobenchmarks are borrowed from Cobra Bench [1]: we
use their implementations and configurations. We tailor the
BlindW [1] to suit our setup, and call it V-BlindW. We also
extend BlindW with range queries as a new benchmark, V-
Range. We elaborate benchmarks’ configurations below.
• V-BlindW : there are two types of transactions, read-only

transactions and write-only transactions. Each transaction
has eight read or write operations to random keys (2K pre-
defined integer keys). By choosing the ratio of read-only
and write-only transactions, V-BlindW has two variants:
(1) BlindW-RM (Read Mostly) with 90% read-only trans-
actions, and (2) BlindW-RW (Read-Write) with 50% each.
• V-Range: V-Range has five operations: reads, writes, in-

serts, deletes, and range queries; and keys are integers that
are greater than 0. Inserts either add non-existing keys
(by increasing the maximum key by 1), or re-insert exist-
ing keys. Deletes randomly remove existing keys. A range
query will query a random range between 1 and the max-
imum key inserted. One operation type has one type of
transactions; each transaction contains eight operations
of the same type. For example, a range query transaction
has eight range queries. V-Range has three variants: (1)
Range-B (Balanced) with 20% transactions of each type,
(2) Range-RQH (Range Query Heavy) with 50% range
query transactions and 12.5% of other types each, and (3)
Range-IDH (Insert Delete Heavy) with 35% of insert and
delete transactions each, and 10% of read, write, and range
query each.
• C-TPCC: a standard online transaction processing bench-

mark [12]. We use a configuration of one warehouse, 10 dis-
tricts, and 30K customers; with transaction types: new or-
der, payment, order status, delivery, and stock level whose
frequencies are 45%, 43%, 4%, 4%, and 4%, respectively.
• C-RUBiS: a bidding system like eBay. We use a configura-

tion of 20K users and 80K items.
• C-Twitter: a simulation of a tiny Twitter. We use a configu-

ration of 1K users.
Experiment setup. To generate histories, we run our five
benchmarks on three databases, TiDB [58], SQLServer [10],
and YugabyteDB [15]. All databases are configured to be SI.
TiDB runs on three Google Cloud machines (each has two
2.25GHz AMD EPYC 7B12 vCPUs, 4GB RAM) with De-
bian 10. SQLServer runs on a machine (2.20GHz Intel Xeon
CPU, 4GB RAM) and Ubuntu 20.04. YugabyteDB runs on a
machine (2.20GHz Intel Xeon CPU, 4GB RAM) and Debian
10. We use 24 concurrent clients (threads) for all experiments,
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Figure 8. Viper outperforms all baselines on BlindW-RW workloads.
Viper can handle >10× larger workloads than baselines.

unless specified otherwise. We got similar checking results for
all three databases, so we only report the results from TiDB.

We run viper and baselines on a machine with a 12-core
processor (AMD Ryzen 9 5900, 3.0GHz), 64GB RAM, and
931 GB SSD. The OS is Ubuntu 20.04. We use Python version
3.8, Z3 solver version 4.8.14.0, and MonoSAT version 1.6.

7.1 Performance and scalability
Compared with natural baselines, using BlindW-RW. In
the following experiments, we compare viper with GSI+Z3,
ASI+Z3, ASI+Mono, and ASI+Mono+Opt on V-BlindW his-
tories. We use V-BlindW because it does not have range
queries (none of these baselines support range queries). In our
setup, clients run V-BlindW and interact with a distributed
TiDB deployed on three machines. History collectors record
transactions and store them as files. Checkers (viper and base-
lines) load files, parse them as a history, and check if the history
is SI. All histories generated are SI (all checkers accept).

We first compare viper with natural baselines that we built,
GSI+Z3, ASI+Z3, ASI+Mono, and ASI+Mono+Opt. All base-
lines check Adya SI. Accordingly, we configure viper to check
Adya SI (§3.2). All checkers run on BlindW-RW histories of
various sizes, where the results are depicted in Figure 8.

Viper outperforms the second best baseline (ASI+Mono)
by 2900× times for a history of size 400 transactions, and
viper can finish 10K transaction history in 439.7 seconds.
Viper runs faster for several reasons. First, viper uses BC-
polygraphs which can leverage graph acyclicity primitives that
are efficiently implemented by MonoSAT. Second, viper has a
more succinct encoding: viper’s SMT variables are about two-
thirds of Z3+ASI, Mono+ASI and Mono+ASI+Opt. Finally,
heuristic pruning helps reduce the number of constraints (see
also §7.2). Viper’s super-linear runtime growth reflects the
NP-Complete nature of the problem. ASI+Mono+Opt timed
out for all the histories, hence is not plotted in the figure.
Compared with Elle, using an append-only benchmark.
We compare viper with Elle’s “sound mode” (we elaborate
Elle’s two modes in §8). In this mode, Elle needs to arrange
the workloads such that the write order is manifested. We
use an append benchmark from the Jepsen project [6]. In this
benchmark, clients issue atomic append operations to some
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Figure 9. Runtime of viper and Elle for Jepsen’s append benchmark.
The x-axis is how long the benchmark runs; the longer it runs the
larger the history it generates. The y-axis is the checking time for
viper and Elle.

keyed lists; and by reading the lists which contain all appended
values, clients (and checkers) know the write order of appends.
To consume Jepsen’s logs, we update viper by translating the
list of values into corresponding write orders and connecting
the consecutive writes. Figure 9 shows the results. The x-
axis is the history generating time because Jepsen testing
framework uses generating time to control the size of a history.
Histories grow linearly in time.

From Figure 9, both viper and viper scale linearly for
checking this append benchmark. This is because write order
has been revealed, thus checking SI is O(n) (where n is the
number of transactions) for both checkers. In particular, by
having write order, the BC-polygraph will have no constraints
(all write-dependencies and anti-dependencies are known),
so it is a BC-graph (directed graph); and viper checks the
acyclicity of this BC-graph. The performance difference in
Figure 9 owes to the graph sizes (BC-graphs double the num-
ber of nodes in serialization graphs) and implementations
(viper uses Python; Elle uses Clojure).

7.2 A closer look at viper
In this section, we look into viper to study how different com-
ponents contribute to viper’s runtime, and how optimizations
vary viper’s performance on all five benchmarks.
Decomposition of viper’s runtime. We run viper on all five
benchmarks with 5K transactions. We measure the wall clock
running time of viper’s, and break it down into four phases:
parsing (parsing the logs from history collectors and summa-
rizing transactions as a history), constructing (constructing
the BC-polygraph from the history), encoding (encoding BC-
polygraph into SMT clauses), and solving (running MonoSAT
to find a solution). Figure 10 shows the results.

Figure 10 illustrates that viper behaves differently for dif-
ferent benchmarks, and different phases also cost differently.
The parsing phase is relatively stable across benchmarks be-
cause all histories have 5K transactions, and the time to parse
one transaction is relatively stable. Constructing and encod-
ing time varies, which is mainly because benchmarks have a
very different number of constraints. Finally, solving is often
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Figure 11. Ablation study of viper optimizations. The y-axis is
in log-scale and the actual runtime is shown on top of bars. “TO”
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the most expensive phase. This is expected given the underly-
ing problem is NP-Complete and the solver essentially does
the heavy lifting for solving the problem. One outlier is C-
TPCC: it doesn’t have solving time. This is because all write
transactions are read-modify-write, and the optimization—
combining writes [83, §3.1]—will automatically inference the
write-dependencies, hence there are no constraints.
Ablation study. Viper checks Adya SI using MonoSAT that
natively supports graph primitives. The baseline ASI+Mono
also checks Adya SI using MonoSAT. Compared with
ASI+Mono, viper has three improvements: (i) encoding histo-
ries as BC-polygraphs (§3.1), (ii) applying two optimizations
from Cobra (§6), and (iii) using heuristic pruning (§3.5).

In this experiment, we study how these three improvements
affect the overall checking time. In particular, we test three
variants of viper: (1) viper itself, (2) viper without heuristic
pruning (call it “viper w/o P”), and (3) viper without both
heuristic pruning and Cobra’s two optimizations (call it “viper
w/o PO”). We run the three viper variants on 5K histories of
all benchmarks. Results are shown in Figure 11.

The message we get from Figure 11 is that optimizations can
be very effective for some benchmarks but have no effect on
others. In other words, there is no “one-optimization-fits-all”.
For C-Twitter, the viper w/o P works well, so heuristic prun-
ing does not stand out. For BlindW-RM, every optimization
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#Txns Trial Z3-GSI Z3-GSI-OPT Z3-ASI Z3-ASI-OPT

100
1 0.95 0.91 317.56 133.01
2 1.09 1.15 255.57 50.17
3 0.94 1.14 21.41 20.72

200
1 10.30 7.89 119.76 104.32
2 6.03 9.35 91.07 92.62
3 9.25 11.15 94.14 99.89

400
1 397.48 393.41 TO TO
2 413.78 491.17 TO TO
3 TO TO TO TO

Figure 13. Apply the heuristic optimization to two Z3 baselines and
their runtime in seconds.

contributes meaningfully. For C-TPCC, the Cobra’s optimiza-
tion, combining writes, reduces constraints because TPCC
has many read-modify-writes; whereas heuristic pruning even
adds some overhead because of topological sorting. Finally,
C-RUBiS demonstrates that heuristic pruning is vital.

We also run two baselines, ASI+Mono and ASI+Mono+Opt,
on all the above histories. Note that the baseline ASI+Mono
is equivalent to viper without all of the three improvements.
And ASI+Mono+Opt is ASI+Mono by applying Cobra’s two
optimizations. They both timed out (>10min) in all cases,
which shows BC-polygraphs is essential for viper.
Client-side concurrency. All prior experiments use 24
concurrent clients (threads). To see how client-side concur-
rency might affect viper’s performance, we experiment with
BlindW-RW by varying the number of clients (threads) from
8 to 64. We tested three sizes of histories: 2K, 5K and 8K
transactions. Note that due to the dynamic of concurrent
transaction executions, the history sizes are not exactly
the same but we make sure the differences are within 5%.
Figure 12 shows the results.

Viper’s performance stays almost the same for 2K and 5K
histories. For 8K histories, the runtime decreases as the con-
currency increases. This is not because viper works better
for higher concurrency. It is because concurrency increases
contention, which results in higher abort rates and fewer com-
mitted transactions per unit of time, which further decreases
the number of constraints in BC-polygraphs.

SI violation Database #Txns Time

Lost updates MongoDB 4.2.6 23.2K 9.75s
Aborted read MongoDB 4.2.6 2.2K 0.97s
G1c: cyclic information flow MongoDB 4.2.6 1.1K 0.52s
Read Your Future Writes MongoDB 4.2.6 4.6K 2.21s
Read Skew TiDB 2.1.7 9.3K 4.28s

Figure 14. Viper detects all real-world SI violations. “SI violation”
describes the phenomenon that clients see. “#Txns” is the number of
transactions in these violation histories. “Time” is how long it takes
viper to reject.

Heuristic pruning. Heuristic pruning is a general optimiza-
tion method that is not specific to viper; it could be applied
to other checkers. We apply the heuristic pruning to two Z3
baselines—Z3+GSI and Z3+ASI—and get two optimized
checkers: Z3+GSI+OPT and Z3+ASI+OPT. We experiment
with BlindW-RW of sizes of 100, 200, and 400 transactions.
We find that the performance of the four checkers fluctuates
significantly, so we run three trials for each history size. Fig-
ure 13 depicts the results.

It turns out that the heuristic pruning only improves Z3-
ASI with 100-transaction histories. For other histories, the
optimization almost has no effect. We find two reasons why
heuristic pruning does not help. First, the histories are tiny and
heuristic pruning works with a small k, hence the number of
constraints removed is minor. Second, these checkers produce
a large number of constraints and iterating them (to check if
can be pruned) outweighs the benefits.

7.3 Checking SI violations
All experiments so far are satisfiable cases that check SI histo-
ries. It is unclear whether viper finishes in a reasonable time
for unsatisfiable cases, where histories violate SI.
Checking real-world SI violations. Next, we experiment
with five real-world histories that have known SI violations.
We download these histories from Jepsen’s bug reports, and
they cover databases of MongoDB and TiDB. Though we did
not test MongoDB in our performance experiments, viper
can check MongoDB’s histories. Figure 14 shows the results.
Viper detects all SI violations and finishes within 10 seconds.
Checking synthetic anomalies. To see how viper performs
on different anomalies, we manually inject three types of
anomalies into two histories of different sizes generated by
BlindW-RW. The three anomalies are: (1) G1c anomaly, a
cycle with three read-dependency edges in SSG; (2) long-fork
anomaly, the long-fork example described in section 3.1; and
(3) G-SIb anomaly, a cycle of exactly one anti-dependency
edge in SSG. Note that we only insert one anomaly into each
history, so it is pessimistic to checkers because bugs usually
trigger many anomalies. Figure 15 shows the results.

Both Elle and viper can detect G1c, and viper finishes
faster. Elle fails to detect G-SIb and long-fork because dislike
the append-only benchmark (§7.1), BlindW-RW doesn’t reveal



#Txns SI anomaly Elle viper

2K
G1c 2.02 (reject) 0.10 (reject)
long-fork 2.02 (accept) 0.12 (reject)
G-SIb 1.87 (accept) 3.61–52.91 (reject)

5K
G1c 2.26 (reject) 0.26 (reject)
long-fork 2.42 (accept) 0.43 (reject)
G-SIb 2.42 (accept) 40.55–TO (reject)

Figure 15. Viper rejects all anomalies.

write-write orders. Hence, Elle uses heuristics to infer write-
dependencies and anti-dependencies, which is not sound.

We also observe that viper has highly unstable performance
for non-SI histories: it takes viper 3.61–52.91 seconds to
detect G-SIb in a 2K history (we run viper five times on the
same history); for the five runs on G-SIb 5K, viper finishes in
40.55, 183.07, 319.32 seconds, and times out twice (>20min).
The internal non-determinism of the SMT solver is the major
reason why viper performance varies for the same history. A
mitigation is to fork multiple viper instances with different
random seeds. It is our future work to study how to provide
stable and predictable performance for non-SI histories.

8 Related work
Black-box checking SI. There are a few checkers [30, 63, 73]
that check SI, and they target different setups. We briefed them
in section 2.3. In particular, two checkers—dbcop [30] and
Elle [63]—apply to black-box databases, which are the closest
to viper. dbcop checks multiple isolation levels. SI is one
of them. In fact, dbcop checks Strong Session SI (instead of
Adya SI) because it requires transactions to obey session order.
Compared with dbcop, viper handles larger histories because
of using BC-polygraphs and viper’s optimizations.

Elle is a versatile checker that checks safety constraints
(including SI) for distributed systems, and it works for many
setups. Elle usually works with the Jepsen project [6], an
impactful testing framework that has discovered many bugs
and safety violations in real-world production systems [5].
Regarding SI, Elle checks Adya SI and has two modes. One
requires to engineer the workloads such that they manifest
write order for keys; for example, by only using “append”
operations for updates, all versions and their write order will
be kept in the value, and clients can then see them. Viper has
the same scalability but worse performance than Elle in this
benchmark (§7.1).

The other mode of Elle works on normal reads and writes for
black-box databases, the same setup as viper. Because write
order is unknown, Elle uses heuristics to infer the order [3].
But, because not all write ordering information can be inferred,
Elle is not sound (may accept non-SI history) for checking SI
in this mode. Compared with Elle (this mode), viper is sound.
SI definitions. There are multiple SI definition frame-
works [16, 26, 37, 41] (as distinct from SI variants), which

result in different SI-checking algorithms and SAT/SMT-
based SI encoding (§2.3). We briefed SI definitions in
section 2.2. Below we discuss those related to viper.

In the early days, people define SI by describing the rules of
SI. For example, when Berenson et al. [26] first define SI, they
describe rules like “first-committer-wins”: if two concurrent
transactions write the same key, the first committed transaction
wins, and the other has to abort. Similar rule-based definitions
appear for SI variants too, like Generalized SI [49]. Viper
makes no assumptions about databases and treats them as
block boxes, so viper works for all SI implementations.

Later, Adya [16, 17] gives a graph-based SI definition (§2.2).
The definition is based on a serialization graph and checks if
there exist cycles with a certain combination of dependency
edges. Compared with checking SI using Adya SI (ASI+Z3,
ASI+Mono, and ASI+Mono+Opt, §7), viper has two major
differences. First, viper introduces BC-polygraphs which “na-
tively” capture multiple possibilities (by using constraints) and
apply to checking black-box databases. Second, checking SI by
BC-polygraphs is much simpler: viper only checks acyclicity,
instead of conditional cycles with certain edges; this results
in much simpler SMT encoding, hence faster solving.

Crooks et al. [41, 42] give the first client-centric SI defi-
nition, the same setup as viper. They also provide a clean
hierarchy of SI variants that viper uses (§5). One interesting
future work is to extend viper with the client-centric defini-
tions since these definitions internalize the black-box setting in
the first place. The technical challenge is that their definitions
ask for an “existence” of certain execution which is likely to
trigger an expensive witness search.

Another line of work that helps define SI is to clarify the
gap between SI and serializability [28, 74]. In 2005, Fekete
et al. [51] proved that if a history is SI but is not serializable,
then the history must have cycles in its serialization graph
and all these cycles must have a certain pattern—having two
consecutive anti-dependency edges. In 2016, Cerone and Gots-
man [38] proved that the above claim of “if-then” in fact is
“if-and-only-if”.

There are other efforts on defining SI and clarifying SI in
various environments and setups. For example, a line of recent
research [60, 61, 87, 88] proposes operation-based semantics
for SI (and other isolation levels), which is easier to integrate
with program logic. Therefore, such an operation-based SI
definition helps check the overall correctness guarantees of the
program plus the storage. People also extend Adya SI to mixed
serialization graph [27], clarify SI in replicated setup [67], and
try to unify isolation levels with cache coherence and mem-
ory consistency models [82]. Viper’s simpler SI definition
(Theorem 4 and §3.4) is one attempt among them.
SI variants. The are many variants of SI. The ones that viper
supports are Adya SI [16, 17], Generalized SI [49] (≡ ANSI
SI [26]), Strong session SI [43] (≡ Prefix-Consistent SI [49]),
and Strong SI [43]. Of course, many other SI variants exist, in-
cluding Parallel SI (PSI) [80], Write-SI [89], Non-Monotonic



SI (NMSI) [20], Clock-SI [45], Posterior SI (PostSI) [92],
and Speculative SI (SPSI) [66]. Some have their own isolation
guarantees. As an example, PSI is a weaker isolation level than
Adya SI; it trades off consistency for performance, especially
for those geo-replicated databases. Other “SI variants”, though
named after SI, may provide stronger isolation guarantees than
SI. For example, Write-SI provides serializability [89]. The
obscure guarantees (and confusing names) of SI variants mo-
tivate tools like viper to distinguish what isolation levels the
database users actually get.
Check other isolation levels. SI is one of many isolation
levels (the I in ACID transactional systems). For example,
serializability is the strongest isolation level that sometimes is
regarded as the gold-standard isolation level [21, 50]. Black-
box checking different isolation levels and consistency models
attract much attention recently [18, 55, 56, 68, 75, 84, 91],
especially along with the booming of cloud storage.

The complexities of checking different isolation levels are
different. We have long known that black-box checking se-
rializability is NP-Complete since 1979 [74]. However, it is
much recent that people prove the complexity of black-box
checking Causal Consistency (in 2017 [33]) and black-box
checking SI (in 2019 [31]); both are NP-Complete. Other iso-
lation levels, Read Committed and Read Atomic, are known
to be polynomial-time checkable [31].

Among all isolation levels, checking serializability [28, 74,
90] has been studied intensively. There are many black-box
checkers, including Cobra [83], Gretchen [4], Sinha et al. [79],
dbcop [30, 31], CobraSAT [2]. Beyond black-box checkers
(which fight with NP-Completeness), there are checkers that re-
cover internal information. Examples are Elle [63] (described
earlier), and Emme [40] which recovers value version order by
studying the tested database’s concurrency control protocol
and providing version order functions.

There is another body of work to check non-transactional
databases (like NoSQL) and memory consistency models [32,
46, 54, 86] for properties like linearizability [57] and sequen-
tial consistency [64]. These approaches have remote connec-
tions to checking SI in how to determine concurrent transac-
tions (their operations).
Testing consistency. In most of the paper, when we say “check-
ing”, we mean an examination that is sound and complete,
sometimes called “verifying”. Of course, there are scenarios
where people do not care about soundness, or completeness, or
both. For example, for an eventually consistent storage system,
people might want to experiment how frequently the storage
returns stale values, and how old the returned values could be.
We call these “testing”.

There is a line of work to test what consistency users can get
from cloud storage systems [18, 19, 55, 62, 68, 75, 84, 91]. In
addition, for complex and hybrid systems, developers also test
their systems to understand the consistency provided under
different workloads and environments [70].

SI databases. Many production databases support SI, includ-
ing Oracle, MongoDB [77], TiDB [11, 58], SQLServer [10],
and YugabyteDB [15]. However, in most cases, users do not
know which SI variants the databases offer. Sometimes, the
same database provides different SI guarantees for different
configurations [73]. This motivates tools like viper to distin-
guish which SI variants databases truly provide.

9 Discussion, future work, and conclusion
Checking other isolation levels. Viper is designed for check-
ing SI and can be extended to check isolation levels that are
stricter than Adya SI (§2.2), for example, Strong SI, Strong
Session SI, and Serializability. Viper however cannot support
weaker isolation levels than Adya SI, for example, PSI [80].
This is because PSI allows different clients to observe dif-
ferent commit orders but the core of viper—BC-polygraph
and BC-graph acyclicity—enforces a single commit order.
Even weaker isolation levels, like Read Committed, is easy to
check [31] and do not need viper or BC-polygraphs.
Viper as a test case generator. Beyond checking black-box
databases, viper also has the potential to generate SI test
cases for grey box testing. For example, by getting the testing
transactions, viper can randomly produce both SI and non-SI
histories based on BC-graphs. Then, we can test these histories
on the targeted database and check their results. The technical
challenge to deploy such a testing system will be enforcing the
scheduling of histories on the tested database because different
databases have different concurrency control mechanisms and
some mechanisms may reject valid SI histories.
Viper as a bug detector. We spend some effort testing
commercial databases with viper, including TiDB [58],
SQLServer [10], and YugabyteDB [15]. Though we found
some gap between real-world implementations and SI
definition [9], we didn’t find critical SI bugs or violations.
It wasn’t surprising because we test these databases using
normal benchmarks under normal environments (without
failures). To increase the chance of finding bugs, our future
work is to design challenging workloads and inject failures
(e.g., disk failures, network partitions) into the environment.
Conclusion. SI databases are widely deployed and people use
them every day. However, it is surprising how little people
know about checking SI: the problem of black-box checking
SI was proved to be NP-Complete in 2019 [31], and only a few
SI checkers exist. This paper presents BC-polygraphs which
are designed for checking SI. Based on BC-polygraphs, we
build viper, a fast SI checker. In addition, a bonus from these
is an SI definition that has a perfect parallel to serializability,
which, in our opinion, should be how we teach SI.
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A Artifact Appendix
A.1 Abstract
The artifacts contain two parts: a viper checker and viper
clients. The viper checker determines whether a given history
is SI. The viper clients are responsible for generating trans-
actions, distributing transactions to black-box databases and
collecting their responses to form histories.

A.2 Description & Requirements
A.2.1 How to access. viper’s artifacts are available at https:
//github.com/Khoury-srg/Viper. Instructions are provided in the
Readme.md for preparing the running environment and re-
producing the major results. A Docker image is also provided
with all the required dependencies of viper.

A.2.2 Hardware dependencies. Viper does not have spe-
cific hardware requirements. All our experiments were run
on a desktop with a 12-core processor (AMD Ryzen 9 5900,
3.0GHz), 64GB RAM, and 931 GB SSD.

A.2.3 Software dependencies.
• Ubuntu 20.04
• python3.8, python3-setuptools python3-pip
• jdk11
• cmake
• g++
• libgmp
• zlib

A.2.4 Benchmarks. Viper’s benchmark repository is here:
https://github.com/Khoury-srg/ViperBench.

We use five benchmarks, two microbenchmarks (V-BlindW
and V-Range) and three macrobenchmarks (C-TPCC,
C-RUBiS, and C-Twitter). The three macrobenchmarks are
borrowed from Cobra Bench [1]: We tailor the BlindW [1] to
suit our setup, and call it V-BlindW. We also extend BlindW
with range queries as a new benchmark, V-Range.

A.3 Set-up
Please follow the instructions in the Readme.md in the viper
repository. The provided Dockerfile is recommended for
easier setup.

A.4 Evaluation workflow
A.4.1 Major Claims.
• Viper outperforms all the natural baselines and can

finish checking large history(>5K) in a reasonable time
while all the natural baselines time out. This is proved by
experiment E1 (see descriptions of experiments E1–8
in §A.4.1).
• The performance difference of Viper and Elle is not

fundamental. This is proven by experiment E2.
• Viper behaves differently for different benchmarks, and

different phases also cost differently. The parsing phase

is relatively stable across benchmarks and solving is
often the most expensive phase. This is proven by ex-
periment E3.
• Optimizations can be very effective for some bench-

marks but have no effect on others. This is proven by
experiment E4.
• As the concurrency increases, Viper’s runtime stays

almost the same for small histories and may decrease
for large histories. This is proven by experiment E5.
• The heuristic optimization does not work for the base-

lines for most histories. This is proven by experiment
E6.
• Viper can successfully detect real-world SI violations

and finishes fast. This is proven by experiment E7.
• Viper can successfully detect synthetic SI violations

while Elle can only detect some of them. This is proven
by experiment E8.

A.4.2 Experiments. You can use the bash scripts in the
src/ae folder of the viper repo (https://github.com/Khoury-
srg/Viper) to reproduce the results. Each script corresponds to
a figure in the paper.

Experiment (E1): [Figure 8] [10 human-minutes + 3
compute-hours]: This experiment compares Viper’s perfor-
mance with natural baselines, including GSI+Z3, ASI+Z3,
ASI+Mono and ASI+Mono+Opt. The expected result is
Viper outperforms all the natural baselines.
[How to]: In the viper home directory, call run_fig8.sh.

Experiment (E2): [Figure 9] [10 human-minutes + 10
compute-minutes]: This experiment compare Viper with Elle.
The expected result is that both of them scale linearly and
hence the performance difference is not fundamental.
[How to]: Call run_fig9.sh.

Experiment (E3): [Figure 10] [10 human-minutes + 10
compute-minutes]: This experiment studies how different
phases contribute to Viper’s runtime, and how various
optimizations may vary viper’s performance on all five
benchmarks. The expected results are: different benchmarks,
and different phases also cost differently. The parsing phase
is relatively stable and the solving phase is often the most
expensive one.
[How to]: Call run_fig10.sh.

Experiment (E4): [Figure 11] [10 human-minutes + 1
compute-hour]: This experiment studies how the three
optimizations affect the overall checking time. The expected
result is that optimizations can be very effective for some
benchmarks but have no effect on others.
[How to]: Call run_fig11.sh.

Experiment (E5): [Figure 12] [5 human-minutes + 30
compute-minutes]: This experiment tests how the runtime

https://github.com/Khoury-srg/Viper
https://github.com/Khoury-srg/Viper
https://github.com/Khoury-srg/ViperBench
https://github.com/Khoury-srg/Viper
https://github.com/Khoury-srg/Viper


changes against concurrency. The expected result is that
Viper’s runtime stays almost the same for 2K and 5K histories
and decreases for 8K histories.
[How to]: Call run_fig12.sh.

Experiment (E6): [Figure 13] [10 human-minutes + 3
compute-hours]: This experiment tests how the heuristic
optimization works with the baselines. The expected result is
that it does not have improvements for most of the histories.
[How to]: Call run_fig13.sh.

Experiment (E7): [Figure 14] [10 human-minutes + 30
compute-minutes]: This experiment downloaded some
snapshot isolation violations cases from Jepsen’s public bug
reports and tests Viper’s usefulness. The expected result is

that Viper can detect the violations fast.
[How to]: Call run_fig14.sh.

Experiment (E8): [Figure 15] [10 human-minutes + 5
compute-minutes]: This experiment manually injects some
snapshot isolation violations into histories and test Viper’s
usefulness. The expected result is that Viper is able to detect
all the violations while Elle can only detect some of them.
[How to]: Call run_fig15.sh.

Generating new histories. The above experiments run on
the histories that we generated ahead of time. If you want
to generate histories from benchmarks, please refer to the
README.md in ViperBench (https://github.com/Khoury-srg/
ViperBench) for instructions.

https://github.com/Khoury-srg/ViperBench
https://github.com/Khoury-srg/ViperBench
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