
Northeastern University
CS5600: Computer Systems: Fall 2021

Final Exam
• This exam is 120 minutes.

• Stop writing when “time” is called. You must turn in your exam; we will not collect it. Do not get up
or pack up in the final ten minutes. The instructor will leave the room 123 minutes after the exam
begins and will not accept exams outside the room.

• There are 11 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided 8.5x11” sheet.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and NUID on the document in which you are working the exam.

Do not write in the boxes below.

I (xx/10) II (xx/10) III (xx/10) IV (xx/10) V (xx/20) VI (xx/20) VII (xx/20) Total (xx/100)

page 2 of 16

I Basics (10 points)

1. [3 points] What’s the functionality of the register cr3 in x86 CPUs?

Explain in 1 sentence.

cr3 points to the root of virtual memory page tables

2. [3 points] Below is a buggy C program:

1 #include "stdio.h"

2 #include "stdlib.h"

3

4 int *ptr1, *ptr2;

5

6 void f() {

7 int a = 0;

8 int* b = (int*) malloc(sizeof(int));

9 ptr1 = &a;

10 ptr2 = b;

11 }

12

13 int main() {

14 f();

15 ... // run some code

16 *ptr1 = 1;

17 *ptr2 = 2;

18 ... // run some other code

19 free(ptr2);

20 }

Why is this program buggy?
Explain why in 1-2 sentences.

At line 16, the program writes to a piece of invalid memory. The memory is pointed by pointer “ptr1”
and is part of a stack frame (of function “f”) that has been destroyed.

3. [4 points] Read the following shell commands and then answer questions.

$ echo "abc" > /tmp/file1

$ ln /tmp/file1 /tmp/hardlink

$ ln -s /tmp/file1 /tmp/softlink

$ rm /tmp/file1

Name: Solutions NUID:

page 3 of 16

Circle your answers below.

After running the above commands, “cat /tmp/hardlink” will print:

A. nothing (empty string)

B. “abc”

C. an error

After running the above commands, “cat /tmp/softlink” will print:

A. nothing (empty string)

B. “abc”

C. an error

B, C

II Authentication and Access control (10 points)

4. [4 points] In class, we have learned about three types of authentications: (1) authentication
based on what you know, (2) authentication based on what you have, and (3) authentication based on
what you are. Describe an authentication process that uses all three types of authentications (either an
existing one or a new one that you design).

Write down your authentication process in 2-3 sentences and pinpoint which step uses what
authentication type.

One possible example:

An example is NEU login with two-factor authentication with iPhone. NEU authentication needs my
password (what you know) and my cellphone confirmation (what you have); in addition, iPhone login
requires face id (what you are).

5. [6 points] In a Unix system,

– there are three users: user1, user2, and user3.

– user1 and user2 are in the same group cs5600; user3 is not.

– file /file1 and directory /dir1 both are created by user1 with group cs5600.

Here is the access control list of file1 and dir1: (the access control list format follows “ls -l”)

/file1: rw-r-----

/dir1: r-xr-xr-x

Name: Solutions NUID:

page 4 of 16

Read the following commands and choose if Unix will pass or reject these accesses.
(Note: the shell prompt shows the user.)

Circle your answers.
[Pass / Reject] user1$ cat /file1
[Pass / Reject] user2$ cat /file1
[Pass / Reject] user3$ cat /file1
[Pass / Reject] user1$ cd /dir1
[Pass / Reject] user1$ ls /dir1
[Pass / Reject] user1$ touch /dir1/file2

answer: Pass, Pass, Reject, Pass, Pass, Reject

III Process and Buffer overflow (10 points)

6. [10 points] Read the following code and answer questions. Note that vulnerable block read is
the malicious version of Lab4’s block read which reads data supplied by a remote attacker.

1 #include "stdio.h"

2

3 int f() {

4 char buf[4096];

5 int ret = vulnerable_block_read(&buf, 10, 1);

8 printf("first byte of block#10: %c\n", buf[0]);

9 return ret;

10 }

11

12 int main() {

13 f();

14 }

Here is the program’s stack after executing line 4.

high address | ... | (a)

+--------+

| %rip | (b)

+--------+

| %rbp | (c)

+--------+

| |

| buf | (d)

| [4096] |

| |

+--------+ <-- %rsp

low address | ... | (e)

Name: Solutions NUID:

page 5 of 16

(4 points) The vulnerable block read conducts a buffer overflow attack by sending a payload larger
than 4096 bytes. When does this attack take effect?
Write down the line number after which the attacker’s code is executing. Explain why it’s the
line number you have chosen, using no more than two sentences.

line 9

When ”f()” returns, the CPU pops the %rip on stack which now points to the attacker’s code. Then the
CPU will start running the attacker’s code.

(3 points) Stack canaries are one way to detect stack smashing attacks. The compiler inserts ”canaries”
(random values) on the stack to check if stack data were overwritten by malicious payloads. Where
should the canaries be placed on the stack?
Circle your answer below.
(Note: (a)–(e) are labels on the stack figure above.)

A. between (a) and (b)

B. between (b) and (c)

C. between (c) and (d)

D. between (d) and (e)

B or C

(3 points) Are the following statements True or False?
Circle your answers.

[True / False] Doubling buf size to be 8192 bytes could secure the program because the payload is
not large enough to overflow the stack then.

[True / False] It’s safe for compilers to fix canary values.

[True / False] The canary-check happens when the function f returns.

False, False, True

IV Scheduling and Concurrency (10 points)

7. [10 points] Consider the setup below, which follows the scheduling game from class. Time is
divided into epochs. Jobs arrive at the very beginning of the epoch listed under “arrival”; after they
have been given the number of CPU epochs listed under “running”, they leave. Assume processes do
no I/O and no synchronization.

Name: Solutions NUID:

page 6 of 16

arrival running

P1 0 5

P2 1 2

P3 2 3

(3 points) The system runs the Shortest Time-to-Completion First (STCF), a classic preemptive
scheduling algorithm.
Write down the process scheduled for each epoch.

0 1 2 3 4 5 6 7 8 9

(3 points) Later, the system administrator assigns priorities to processes as follows:

P1: low

P2: medium

P3: high

Then, the system runs the preemptive priority scheduling algorithm.
Write down the process scheduled for each epoch.

0 1 2 3 4 5 6 7 8 9

(4 points) Later, the programmers add synchronization to the processes as follows. Note that P1 and P3
share the same lock.

P1:

acquire(&lock);

run1(); // takes 5 epochs

release(&lock);

P2:

run2(); // takes 2 epochs

P3:

run3a(); // takes 2 epochs

acquire(&lock);

run3b(); // takes 1 epochs

release(&lock);

The system still uses the preemptive priority scheduling algorithm.
Write down the process scheduled for each epoch now.

0 1 2 3 4 5 6 7 8 9

Solution:

STCF:

0 1 2 3 4 5 6 7 8 9

P1 P2 P2 P3 P3 P3 P1 P1 P1 P1

Priority scheduling:

Name: Solutions NUID:

page 7 of 16

0 1 2 3 4 5 6 7 8 9

P1 P2 P3 P3 P3 P2 P1 P1 P1 P1

Priority + synchronization (priority inversion):

0 1 2 3 4 5 6 7 8 9

P1 P2 P3 P3 P2 P1 P1 P1 P1 P3

V Virtual Memory (20 points)

8. [20 points] Assume a system vm5600 that uses bit-addressable memory; that is, two consecutive
memory addresses are referring to individual bits (instead of bytes in x86 CPUs). Like x86, vm5600
uses paging for virtual memory; but unlike x86, the page size is 8KB. vm5600 uses a 2-level page table
and a virtual address that has 36 bits for addressing, broken down as follows:

[10 bits | 10 bits | 16 bits]

The top 10 bits index into the L1 page table; the next 10 bits index into a L2 page table; the bottom 16
bits determine the bit offset into the physical page.

The figure below is a snapshot of vm5600 memory that shows four physical pages.
In the figure,

– memory is drawn in 64-bit units.

– the address on the left of a unit is the starting physical address of these 64 bits.

– the page table root and page table entry (64bit) are described at the bottom.

– vm5600 uses big endian. (If you don’t understand, you can safely ignore this note.)

Name: Solutions NUID:

page 8 of 16

0x1240006

0xdeadbeef

0xbebeebee

0xdeafbeef

0x1230006

0x1230007

0x1240007

0x1260007

0x1230006

0x1230007

0x1240007

0xdeadbeef

0x123ffc0

0x1238000

0x1230000 (64bit)

0x124ffc0

0x1248000

0x1240000

0x125ffc0

0x1258000

0x1250000

0x126ffc0

0x1268000

0x1260000

0x1250000

Page table root: Page table entry (64bit)

R/W PU/S
unused
(13bit)

unused
(8bit)

physical page
number (40bit)

(3bit)

(4 points) Are the following statements True or False?
Circle your answers.

[True / False] Virtual addresses 0x1230000 and 0x1230001 must be located on the same physical page.

[True / False] Virtual addresses 0x123ffff and 0x1240000 must be located on the same physical page.

[True / False] Virtual addresses 0x1235000 and 0x1240000 must be located on the same physical page.

[True / False] Virtual addresses 0xdeadbeef and 0xbeebee must be located on the same physical page.

True, False, False, False

Virtual memory with paging cannot change offsets within a page, and the vm5600’s offset is the last
16bit (that’s 4 digits in hex). So, by ignoring the last four digits in hex, all choices have the same virtual
page numbers must be located on the same physical page.

(2 points) vm5600’s physical page numbers (PPN) use 40-bit addresses, how many bits does a physical
address have?
Write down the number of bits and explain why in 1 sentence.

40 + 16 = 56.

The physical address have two parts, PPN (40 bits) and offset (16 bits).

Name: Solutions NUID:

page 9 of 16

(3 points) In vm5600, what’s the maximum memory size of a process? And what’s the maximum
memory size of a machine? (Note: vm5600 is bit-addressable and the page size is 8KB. 210B is 1KB;
220B is 1MB; 230B is 1GB; 240B is 1TB; 250B is 1PB.)
Circle your answer.

A. 2 MB and 4 GB

B. 2 GB and 4 TB

C. 2 GB and 8 TB

D. 8 GB and 8 PB

D

process: VA is 36-bit, bit-addressable; that is (236 bits) / (8 bits/Byte) = 233 Bytes = 23 GB.

machine: PA has 40 bits for PPN; each page is 8KB; then 240 * 8 KB = 8 PB.

(3 points) Given a virtual address 0xffe008000, please split the address into L1 index (10bit), L2 index
(10bit), and page offset (16bit).
Write down the values in hexadecimal numbers (for example, 0x12345).

L1 index:

L2 index:

offset:

L1 index: 0x3ff

L2 index: 0x200

offset: 0x8000

Note: an index is an ordinal number that indicates a PTE in the page table. For example, L1 index
with 0x3ff means the 1023th (i.e. 0x3ff) PTE in the L1 page table. And, in vm5600, sizeof(PTE) is 8
Bytes.

(4 points) Given the vm5600 memory snapshot above, what is the physical address of the virtual address
0xffe008000?
Write down the physical address in hexadecimal numbers (for example, 0x12345), and explain
the page walk in 2-3 sentences.

PA: 0x1238000

page walk:

- root: page 0x1250000

- then, the L1 index (0x3ff) points to the last entry (1023th), which leads to page 0x1240000;

- then, the L2 index (0x200) points to the 512th entry, which leads to page 0x1230000;

- finally, concatenating the offset (0x8000) results in “0x1238000”.

(4 points) Here is a C program that runs on vm5600.

Name: Solutions NUID:

page 10 of 16

int main() {

int64_t *ptr1 = (int64_t *) 0xffe008000;

char *ptr2 = (char *) 0x3ff8000;

printf("int64 ptr1: 0x%x, char ptr2: 0x%x\n", *ptr1, *ptr2);

}

Note: %x prints the number in hexadecimal. sizeof(int64 t) is 8 (bytes), and sizeof(char) is 1
(byte).

Given the vm5600 memory snapshot above, what will this piece of code print?
Write down the output of this code snippet.

You will get points if you answer:

“int ptr1: 0xbebeebee, char ptr2: 0xbebeebee”

OR

“int ptr1: 0x0, char ptr2: 0x0” (the real correct answer)

OR

“int ptr1: 0xbebeebee, char ptr2: 0xffffffee”

[note: this question is too tricky, and we are giving points to those who clearly show they understand
walking the page tables.]

Both ptr1 and ptr2 point to the physical address 0x1238000. The 64-bit unit of 0x1238000 contains:
“0x0000 0000 bebe ebee” (with leading zeros).

What printed on screen depends on how printf interprets the pointers. In our case, both ptr1 and ptr2
would be treated as %x, which is an “Unsigned hexadecimal integer” (see: http://www.cplusplus.
com/reference/cstdio/printf/). So, the expected outcome should be the first 8Bytes of data
pointed by physical address 0x1238000, namely “0x00000000”.

VI I/O & File system & Crash recovery (20 points)

9. [20 points] disk5600 is a new disk that exposes a sequence of blocks. Each block is 16KB.

(3 points) Are the following statements True or False?
Circle your answers.

[True / False] Programmed I/O can be used to transfer both commands and data.

[True / False] DMA is good at transferring large chunks of data to and from devices.

[True / False] DMA always works with the interrupt mechanism.

True, True, False

(3 points) A file system fs-disk5600 uses 8 blocks as bitmap to track free/used blocks.
What’s the maximum size of the fs-disk5600?

Name: Solutions NUID:

http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/printf/

page 11 of 16

16GB

Because each bit represents a block:

#blocks = 8 * #bits in a block = 8 * (16 * 1024 * 8) = 220

fs-disk5600 size: 16GB = 220 * 16KB

(4 points) In fs-disk5600, a file’s inode has 10 direct blocks and 10 indirect blocks. (hint: we learned
about “indirect blocks” when introducing Unix inodes.)

Choose the size of a block pointer that you think makes sense. (Note: a block pointer should be able to
address all blocks in the fs-disk5600.)
Circle your answer.

A. 16bit

B. 32bit

C. 64bit

D. 128bit

What is the maximum size of a file, based on your choice above?
Write down both the file size and your calculation.
(Note: it is okay to write the size in a product form, for example, “123×456×789TB”.)

Choice A doesn’t make sense because it cannot address a fs-disk5600, given there are at most 220

blocks. B, C, and D are all okay.

(if B) #blocks = 10 + (16KB / 32bit) * 10 = 40970

file size = 40970 * 16KB

(if C) #blocks = 10 + (16KB / 64bit) * 10 = 20490

file size = 20490 * 16KB

(if D) #blocks = 10 + (16KB / 128bit) * 10 = 10250

file size = 10250 * 16KB

(4 points) Assume one inode is always stored within one block (inode size <16KB), and buffer-cache
is empty (meaning the process will read all data from disk5600).
If a process needs to read 161KB data from the beginning of a file (namely, file offset is 0), how many
blocks the process will read from disk5600?
Write down the number of blocks and explain what these blocks are.

13

1 for file’s inode

10 for direct data blocks (160KB data)

1 for the indirect block

1 for data block pointed by the indirect block (the final 1KB data)

Name: Solutions NUID:

page 12 of 16

(Note: if you assume starting from root directory and adding those blocks, that’s fine.)

(6 points) fs-disk5600 uses redo logging for crash recovery, and it is configured to log everything
including user data. Now, a process wants to update the first 1KB of a file. What pieces of information
should fs-disk5600 write to the redo log (the journal)? And what dependencies do these pieces have?
In particular, which piece(s) must be completed before which piece(s) start logging?
Write down the information fs-disk5600 needs to log and describe their dependencies.

fs-disk5600 writes to redo log (journal) with:

(1) a begin transaction message with txn id

(2) file inode block (with updated size, time, and other metadata changes)

(3) the first data block (with 1KB update)

(4) a commit transaction message with txn id

The dependency is: (4) must start after all (1), (2), and (3) finish.

Note:

- if you assume starting from root directory and adding those, that’s fine.

- copy-pasting redo logging steps from your cheat sheet doesn’t count.

- rambling irrelevant or incorrect content will lose points. (see instructions on the front page.)

VII Lab3 and Lab4 (20 points)

10. [10 points] In this problem, you will re-implement Lab3’s concurrent queue. The queue
should allow multiple threads to enqueue and dequeue concurrently. Again, you must follow the two
requirements of concurrent programming below. (copied from Lab3 and simplified)

Requirement I: concurrency commandments (namely, six rules). You are required to follow these
standards.

Requirement II: monitor. You must implement the concurrent queue as a monitor. Note that C
programming language doesn’t have native monitor supports or object oriented programming. Hence,
you are going to implement “manually constructed” monitors in C style, wherein: (1) all function calls
are protected by a mutex (that is, the programmer inserts those acquire()/release() on entry and exit
from every procedure that works with the shared state). (2) synchronization happens with condition
variables whose associated mutex is the mutex that protects the functions.

As a reminder, here are the relevant data structures in queue.h.

typedef struct task task_t;

struct task {

task_t *next;

int fd;

Name: Solutions NUID:

page 13 of 16

};

typedef struct queue {

task_t *head; /* remove from head */

task_t *tail; /* append to tail */

int count;

} queue_t;

Finish the code below.
Note: there are three TODO pieces you need to fill in.

/* TODO: define your synchronization variables here */

// Append a task to the end of the queue.

void enqueue(queue_t *q, task_t *t) {

/* TODO: your code here */

}

// Return the task at the head of the queue.

// If the queue is empty, the thread should wait.

task_t* dequeue(queue_t *q) {

/* TODO: your code here */

Name: Solutions NUID:

page 14 of 16

}

Name: Solutions NUID:

page 15 of 16

One possible implementation:

pthread_mutex_t qm = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t qcv = PTHREAD_COND_INITIALIZER;

void enqueue(queue_t *q, task_t *t) {

pthread_mutex_lock(&qm);

t->next = NULL;

if (q->head == NULL)

q->head = q->tail = t;

else {

q->tail->next = t;

q->tail = t;

}

q->count++;

pthread_cond_signal(&qcv);

pthread_mutex_unlock(&qm);

}

task_t* dequeue(queue_t *q) {

pthread_mutex_lock(&qm);

while (q->head == NULL)

pthread_cond_wait(&qcv, &qm);

task_t *t = q->head;

q->head = t->next;

q->count--;

pthread_mutex_unlock(&qm);

return t;

}

11. [10 points] Below are some questions about the design of the CS5600 File System in Lab4.
These questions are intended to be straightforward, if you have basic familiarity with the lab. You can
answer them even if you did not successfully submit the lab

(2 points) What is the block size in Lab4?
Write down your answer in KB.

(2 points) How many blocks does fs5600 use for the bitmap?

(2 points) Which block does fs5600 use as the root directory (namely, the “/”)?
Write down its block id.

(2 points) What is the size of an inode in fs5600?
Write down your answer in KB.

Name: Solutions NUID:

page 16 of 16

(2 points) How many data blocks does a fs5600 directory use?

4KB,

1,

2,

4KB,

1

End of Final

Name: Solutions NUID:

	I Basics (10 points)
	II Authentication and Access control (10 points)
	III Process and Buffer overflow (10 points)
	IV Scheduling and Concurrency (10 points)
	V Virtual Memory (20 points)
	VI I/O & File system & Crash recovery (20 points)
	VII Lab3 and Lab4 (20 points)

