
Page 1 of 3

handout_w5b 2/13/22, 3:14 PM

1 CS5600 Week5.b
2
3 The handout from the last class gave examples of race conditions.
4 The following panels demonstrate the use of concurrency primitives
5 (mutexes, etc.). We are using concurrency primitives to eliminate
6 race conditions (see items 1 and 2a) and improve scheduling (see item 2b).
7
8
9 1. Protecting the linked list......
10
11 Mutex list_mutex;
12
13 insert(int data) {
14 List_elem* l = new List_elem;
15 l−>data = data;
16
17 acquire(&list_mutex);
18
19 l−>next = head;
20 head = l;
21
22 release(&list_mutex);
23 }
24

CS5600, Cheng Tan

Page 2 of 3

handout_w5b 2/13/22, 3:14 PM

25 2. Producer/consumer revisited [also known as bounded buffer]
26
27 2a. Producer/consumer [bounded buffer] with mutexes
28
29 Mutex mutex;
30
31 void producer (void *ignored) {
32 for (;;) {
33 /* next line produces an item and puts it in nextProduced */
34 nextProduced = means_of_production();
35
36 acquire(&mutex);
37 while (count == BUFFER_SIZE) {
38 release(&mutex);
39 yield(); /* or schedule() */
40 acquire(&mutex);
41 }
42
43 buffer [in] = nextProduced;
44 in = (in + 1) % BUFFER_SIZE;
45 count++;
46 release(&mutex);
47 }
48 }
49
50 void consumer (void *ignored) {
51 for (;;) {
52
53 acquire(&mutex);
54 while (count == 0) {
55 release(&mutex);
56 yield(); /* or schedule() */
57 acquire(&mutex);
58 }
59
60 nextConsumed = buffer[out];
61 out = (out + 1) % BUFFER_SIZE;
62 count−−;
63 release(&mutex);
64
65 /* next line abstractly consumes the item */
66 consume_item(nextConsumed);
67 }
68 }
69

CS5600, Cheng Tan

Page 3 of 3

handout_w5b 2/13/22, 3:14 PM

70
71 2b. Producer/consumer [bounded buffer] with mutexes and condition variables
72
73 Mutex mutex;
74 Cond nonempty;
75 Cond nonfull;
76
77 void producer (void *ignored) {
78 for (;;) {
79 /* next line produces an item and puts it in nextProduced */
80 nextProduced = means_of_production();
81
82 acquire(&mutex);
83 while (count == BUFFER_SIZE)
84 cond_wait(&nonfull, &mutex);
85
86 buffer [in] = nextProduced;
87 in = (in + 1) % BUFFER_SIZE;
88 count++;
89 cond_signal(&nonempty, &mutex);
90 release(&mutex);
91 }
92 }
93
94 void consumer (void *ignored) {
95 for (;;) {
96
97 acquire(&mutex);
98 while (count == 0)
99 cond_wait(&nonempty, &mutex);
100
101 nextConsumed = buffer[out];
102 out = (out + 1) % BUFFER_SIZE;
103 count−−;
104 cond_signal(&nonfull, &mutex);
105 release(&mutex);
106
107 /* next line abstractly consumes the item */
108 consume_item(nextConsumed);
109 }
110 }
111
112
113 Question: why does cond_wait need to both release the mutex and
114 sleep? Why not:
115
116 while (count == BUFFER_SIZE) {
117 release(&mutex);
118 cond_wait(&nonfull);
119 acquire(&mutex);
120 }
121

CS5600, Cheng Tan

