Stack Usage with
Privilege-Level Change

Interrupted Procedure's ,
Stack Handler's Stack

~«——ESP Before

Transfer to Handler sSS
ESP

EFLAGS
CS
EIP

ESP After——» Error Code
Transfer to Handler

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

31 15 543210
92 IEEIEERS
Reserved % Reserved I
P 0 The fault was caused by a non-present page.

1 The fault was caused by a page-level protection violation.

WIR The access causing the fault was a read.

The access causing the fault was a write.

- O

u/s A supervisor-mode access caused the fault.

A user-mode access caused the fault.

- O

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

RSVD

- O

The fault was not caused by an instruction fetch.
The fault was caused by an instruction fetch.

)
Ny

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

SGX 0 The fault is not related to SGX.
1 The fault resulted from violation of SGX-specific access-control
requirements.

Figure 4-12. Page-Fault Error Code

handout_w11a £S5600, Cheng Tan 3/27/22, 7:52 PM handout_w11a £S5600, Cheng Tan 3/27/22, 7:52 PM
1 (CS5600, Handout weekll.a
2
3 /x file: mmap.c */ Question:
4 Which runs faster, option 1 or option 2? by how much?
5 #include <fcntl.h>
6 #include <stdio.h> Exercise:
7 #include <stdlib.h> Try to run both options by yourself:
8 #include <sys/mman.h>
9 #include <sys/stat.h> $ cat /dev/urandom | head -c 1000000000 > 1G.file
10 #include <sys/types.h> $ make mmap
11 #include <unistd.h> $ time ./mmap 1G.file > /dev/null
12
13 void mmapwrite(int fd, int size); $ vim mmap.c
14 void normalwrite(int fd, int size); // switch to option 2
15 $ make mmap
16 int main(int argc, char sxargv) { $ time ./mmap 1G.file > /dev/null
17 struct stat stat;
18 int fd;
19
20 if (argc !'=2) { // Check for required cmd line arg
21 printf("usage: %s <filename>\n", argv[0]);
22 exit(0);
23 ¥
24
25 /* Copy input file to stdout */
26 if ((fd = open(argv[1], O_RDONLY, @)) < @)
27 perror("open");
28
29 fstat(fd, &stat);
30
31 // option 1
32 mmapwrite(fd, stat.st_size);
33
34 /* // option 2
35 * normalwrite(fd, stat.st_size);
36 */
37
38 close(fd);
39
40 return 0;
41 '}
42
43 void mmapwrite(int fd, int size) {
44
45 /* Ptr to memory mapped area */
46 char xbufp;
47
48 bufp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
49
50 write(STDOUT_FILENO, bufp, size);
51
52 return;
53 }
54
55
56 void normalwrite(int fd, int size) {
57
58 char *buf = malloc(size);
59
60 read(fd, buf, size);
61
62 write(STDOUT_FILENO, buf, size);
63
64 return;
65 }
Page 1 of 2 Page 2 of 2

