1. Last time
2. Scheduling disciplines FIFO SJW
3. Vote for your favorite scheduling algorithm 2
nw, Q2

$$
\downarrow \begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

(1) $0 \Rightarrow 2$ process
(2) $\Delta \Rightarrow$ line 1
helloworla lime 2
(3) scheduling

Mac Os.
3 "hello world"
3. metrics of scheduling

- turn aroid tine
- response time
- fairness
- scheduling game (recall)

$$
\left\{\begin{array}{l}
\text {-- } 1 \text { CPU } \\
\text { - multiple processes: P1, P2, P3, ... } \\
\text {-- ignore with arrival time and running time } \\
\text {-- assume no I/O switches } \\
\text {-- scheduling output: } \\
\quad \text { a sequence of scheduling decisions }
\end{array}\right.
$$

A. FCFS/FIFO

B. SJF and STer

P4

P1 P1 P2 P2 P3 TP2 P2 P4 P4 P4 P4 P1 PI PL P1 PI
(5) (2)

$$
\begin{aligned}
& \text { turnaround }=\frac{16+5+1+6}{4}=7 \\
& \frac{\text { resp tine }}{\text { re to }}=15, \frac{3}{4}, 3,1,0.5,025 \\
& \frac{0+0+2}{4}=0.5
\end{aligned}
$$

C. Round-robin ($R R$)

> (with slice of 1 unit of time)
> process arrival running
> $\left.\begin{array}{lll}\text { Pf } & 0 & 50 \\ \text { Pf } & 0+\varepsilon & 50\end{array}\right\} 100$

$$
\begin{aligned}
& \text { resp time }=\frac{0+1}{2}=0.5=99.5
\end{aligned}
$$

D. Priority \longrightarrow SJ
$\begin{array}{ccc}\text { process } & \text { arrival } & \text { running } \\ \text { P1 (high) } & 0 & 10 \\ \text { P2 (low) } & 0 & 5\end{array}$

$$
\frac{5}{P 2}+\frac{10}{P L}+\frac{5+15}{2}=10
$$

E. Multi-level feedback queue (MLFQ)

lowest
(with slice of 1 unit of time;
2 units of time to change priority, i.e., "downgrade")

$$
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
P 1 & P 2 & P 1 & P 2 & P 3 & P 3 & P 1 & P 2 & P 3 & P 1 & P_{2} & P 3
\end{array}
$$

F. Lottery (and stride scheduling \$

$$
\begin{aligned}
& \text { (with slice of } 1 \text { unit of time) } \\
& p_{i}=t_{i} \\
& \begin{array}{ccc}
\text { process } & \text { arrival } & \text { running } \\
\text { Pf }\left(t _1=20\right) & 0 & 20
\end{array} \\
& \text { Pf } \quad\left(t_{-}^{-} 2=10\right) \\
& \left.\begin{array}{ll}
0 & 20 \\
0 & 10
\end{array}\right\} 20 \\
& T=\Sigma t_{i} \\
& \text { PLP2P1P2… } \\
& \text { P1P1․-P1P2…P2 } \\
& \operatorname{Pr}\left(P_{i}\right)=\frac{f_{i}}{T} \\
& \text { P1P1P2P1P1P2... }
\end{aligned}
$$

Question: expected turnaround time for (P1, P2):
A. $(20,30)$
B. $(30,20)$
C. $(30,30)$

$$
\begin{aligned}
& P_{1}=\frac{20}{\left(\frac{20}{20+10}\right)=\frac{2}{3}}=30 \\
& P_{2}=\frac{10}{\left(\frac{10}{20+10}\right)}=30
\end{aligned}
$$

Candidates: FIFO, STCF, RR, Prior, MLFQ, and Lottery
Awards:
"Best Turnaround Time"
"Best Response Time"
"Best Fairness"
"Most popular algorithm"

- Chang's choices

