Last time
 More about scheduling
 Scheduling problem today
 Lessons and conclusions
 Threads
 Intro to concurrency

Votes last time: (with candidate >=5 votes)

3 jobs					
P1, P2: bot	th CPU bound,	, run for	a weel	c	
P3: I/O bound, loop					
(1 ms (of CPU, 10 ms	s of disk	I/O)		
			_/ _/		
process	arrival	running			
P1	0	1 week			
P2	0.16	1 week			
 P3		30 500	(with	300sec	τ/0)
10	× + 2と	JU DCC	(** ± CII	3000000	±,0)

- predict future EWMA

$$t_n \leftarrow h_{+h} running$$

 $T_{n+1} = d \cdot t_n + (i-d)T_n$
 $Gde(0, 1]$
 $d=1: T_{n+1} = t_n$
 $d=\frac{1}{2}: T_{n+1} = \frac{1}{2}t_n + \frac{1}{2}\cdot T_n$
 $\frac{(\frac{1}{2}t_{n+1} + \frac{1}{2}\cdot T_{n-1})}{(\frac{1}{2}t_{n-1} + \frac{1}{2}\cdot T_{n-1})}$
 $Context NM \rightarrow t = \frac{1}{2}t_n + \frac{1}{4}T_{n-1} + \frac{1}{4}T_{n-1}$
 $t_8 t_{h-2} + \frac{1}{8}T_{h-2}$

נה

~^

