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problem." Concurrency: the Works of Leslie Lamport. 2019. 171-178. 
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Borrowed from blog “Memory Consistency Model: A Tutorial”, James Bornholt. 
https://www.cs.utexas.edu/~bornholt/post/memory-models.html 
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Borrowed from “Everything You Always Wanted to Know About Synchronization but Were Afraid to Ask”, 
SOSP’13 
https://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf 

multi core CPU

E
N

Ee
no

48 80

Locores



1. Last time
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5. Condition variables
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    void *f(void *xx) {
        sleep(1);
        printf("this is f\n");
        exit(0);
    }

    int main(){
        pthread_t tid;
        pthread_create(&tid, NULL, f, NULL);
        pthread_join(tid, NULL);  // line X
        printf("this is main\n");
    }

       T1: W1(x)=1, R1(y)=2
      T2: W2(y)=2, R2(x)=1

      T1: W1(x)=1, R1(y)=0
      T2: W2(y)=2, R2(x)=0
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         mutex_t m

        mutex_init(mutex_t* m)

        acquire(mutex_t* m)

        release(mutex_t* m)
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1   1. Example to illustrate interleavings: say that thread A executes f()
2   and thread B executes g(). (Here, we are using the term "thread"
3   abstractly. This example applies to any of the approaches that fall
4   under the word "thread".)
5   
6       a. [this is pseudocode]
7   
8           int x;
9   
10          int main(int argc, char** argv) {
11          
12              tid tid1 = thread_create(f, NULL);
13              tid tid2 = thread_create(g, NULL);
14  
15              thread_join(tid1);
16              thread_join(tid2);
17  
18              printf("%d\n", x);
19  
20          }
21  
22          void f() {
23              x = 1;
24              thread_exit();
25          }
26  
27          void g() {
28              x = 2;
29              thread_exit();
30          }
31  
32          What are possible values of x after A has executed f() and B has
33          executed g()? In other words, what are possible outputs of the
34          program above?
35  
36          
37      b. Same question as above, but f() and g() are now defined as
38      follows
39  
40          int y = 12;
41  
42          f() { x = y + 1; }
43          g() { y = y * 2; }
44  
45          What are the possible values of x?
46  
47      c. Same question as above, but f() and g() are now defined as
48      follows:
49  
50          int x = 0;
51  
52          f() { x = x + 1; }
53          g() { x = x + 2; }
54  
55          What are the possible values of x?
56  
57   
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58 
59  
60  2. Linked list example
61  
62      struct List_elem {
63          int data;
64          struct List_elem* next;
65      };
66  
67      List_elem* head = 0;
68  
69      insert(int data) {
70          List_elem* l = new List_elem;
71          l−>data = data;
72          l−>next = head;
73          head = l;
74      }
75  
76      What happens if two threads execute insert() at once and we get the
77      following interleaving?
78  
79      thread 1: l->next = head
80      thread 2: l->next = head
81      thread 2: head = l;
82      thread 1: head = l;
83  
84  
85  
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1   CS5600 Week5.b
2
3   The handout from the last class gave examples of race conditions.
4   The following panels demonstrate the use of concurrency primitives
5   (mutexes, etc.). We are using concurrency primitives to eliminate
6   race conditions (see items 1 and 2a) and improve scheduling (see item 2b).
7
8
9   1. Protecting the linked list......
10
11      Mutex list_mutex;
12
13      insert(int data) {
14        List_elem* l = new List_elem;
15        l−>data = data;
16
17        acquire(&list_mutex);
18
19        l−>next = head;
20        head = l;
21
22        release(&list_mutex);
23      }
24
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25  2. Producer/consumer revisited [also known as bounded buffer]
26
27  2a. Producer/consumer [bounded buffer] with mutexes
28
29      Mutex mutex;
30
31      void producer (void *ignored) {
32        for (;;) {
33          /* next line produces an item and puts it in nextProduced */
34          nextProduced = means_of_production();
35
36          acquire(&mutex);
37          while (count == BUFFER_SIZE) {
38            release(&mutex);
39            yield(); /* or schedule() */
40            acquire(&mutex);
41          }
42
43          buffer [in] = nextProduced;
44          in = (in + 1) % BUFFER_SIZE;
45          count++;
46          release(&mutex);
47        }
48      }
49
50      void consumer (void *ignored) {
51        for (;;) {
52
53          acquire(&mutex);
54          while (count == 0) {
55            release(&mutex);
56            yield(); /* or schedule() */
57            acquire(&mutex);
58          }
59
60          nextConsumed = buffer[out];
61          out = (out + 1) % BUFFER_SIZE;
62          count−−;
63          release(&mutex);
64
65          /* next line abstractly consumes the item */
66          consume_item(nextConsumed);
67        }
68      }
69
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70
71   2b. Producer/consumer [bounded buffer] with mutexes and condition variables
72
73       Mutex mutex;
74       Cond nonempty;
75       Cond nonfull;
76
77       void producer (void *ignored) {
78         for (;;) {
79           /* next line produces an item and puts it in nextProduced */
80           nextProduced = means_of_production();
81
82           acquire(&mutex);
83           while (count == BUFFER_SIZE)
84             cond_wait(&nonfull, &mutex);
85
86           buffer [in] = nextProduced;
87           in = (in + 1) % BUFFER_SIZE;
88           count++;
89           cond_signal(&nonempty, &mutex);
90           release(&mutex);
91         }
92       }
93
94       void consumer (void *ignored) {
95         for (;;) {
96
97           acquire(&mutex);
98           while (count == 0)
99             cond_wait(&nonempty, &mutex);
100
101          nextConsumed = buffer[out];
102          out = (out + 1) % BUFFER_SIZE;
103          count−−;
104          cond_signal(&nonfull, &mutex);
105          release(&mutex);
106
107          /* next line abstractly consumes the item */
108          consume_item(nextConsumed);
109        }
110      }
111
112
113  Question: why does cond_wait need to both release the mutex and
114  sleep? Why not:
115
116      while (count == BUFFER_SIZE) {
117        release(&mutex);
118        cond_wait(&nonfull);
119        acquire(&mutex);
120      }
121
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