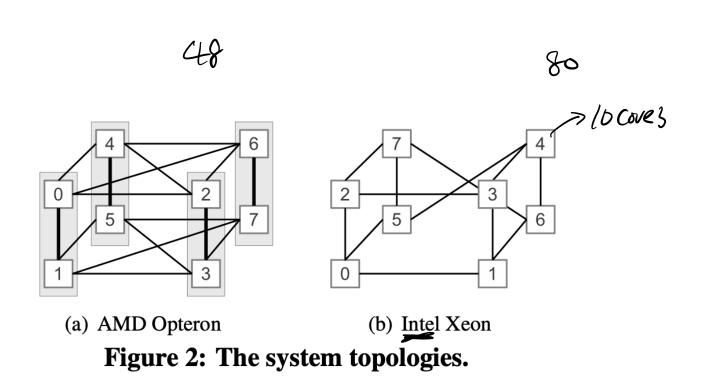


Borrowed from Lamport, Leslie. "A new solution of Dijkstra's concurrent programming problem." *Computer North Software Concurrent Programming* 7819, 171-178.

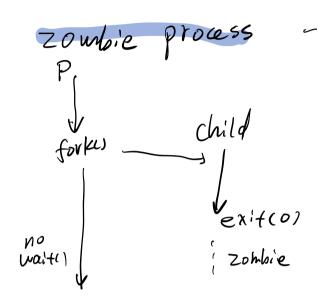
1977 CACM

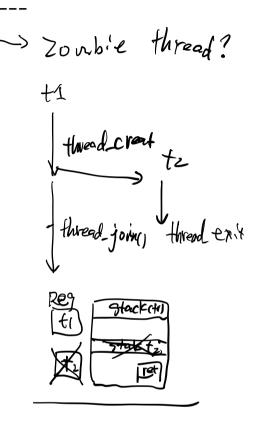


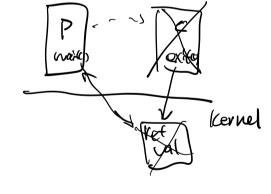
Borrowed from blog "Memory Consistency Model: A Tutorial", James Bornholt. https://www.cs.utexas.edu/~bornholt/post/memory-models.html

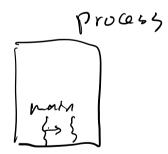
```
Multi-core CPU
```

Name	Opteron	Xeon	Niagara	Tilera
System	AMD Magny Cours	Intel Westmere-EX	SUN SPARC-T5120	Tilera TILE-Gx36
Processors	$4 \times AMD$ Opteron 6172	8× Intel Xeon E7-8867L	SUN UltraSPARC-T2	TILE-Gx-CPU
# Cores	(48)	(80 no hyper-threading)	8 (64 hardware threads)	36
Core clock	2.1 GHz	2.13 GHz	1.2 GHz	1.2 GHz
S L1 Cache	<u>64/64 KiB</u> I/D	32/32 KiB I/D	16/8 Kill I/D	32/32 KiB I/D
L2 Cache	<u>512 KiB</u>	256 KiB		256 KiB
Last-level Cache	2×6 MiB (shared per die)	30 MiB (shared)	4 MiB (shared)	9 MiB Distributed
Interconnect	onnect 6.4 GT/s HyperTransport 6.4 GT/s Q		Niagara2 Crossbar	Thera iMesh
	(HT) 3.0	Interconnect (QPI)		
Memory	128 GiB DDR3-1333	192 GiB Sync DDR3-1067	32 GiB FB-DIMM-400	16 GrB DDR3-800
#Channels / #Nodes	4 per socket / 8	4 per socket / 8	8/1	4/2
OS	Ubuntu 12.04.2 / 3.4.2	Red Hat EL 6.3 / 2.6.32	Solaris 10 u7	Tilera EL 6.3 / 2.6.40

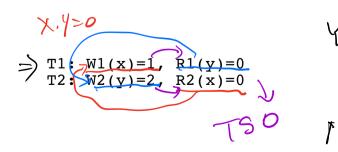

Table 1: The hardware and the OS characteristics of the target platforms.

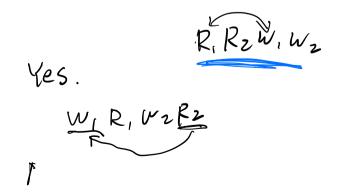



Borrowed from "Everything You Always Wanted to Know About Synchronization but Were Afraid to Ask", SOSP'13


https://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf

Last time 2. Critical section
 Bakery algorithm
 Mutexes
 Condition variables
 Semaphores



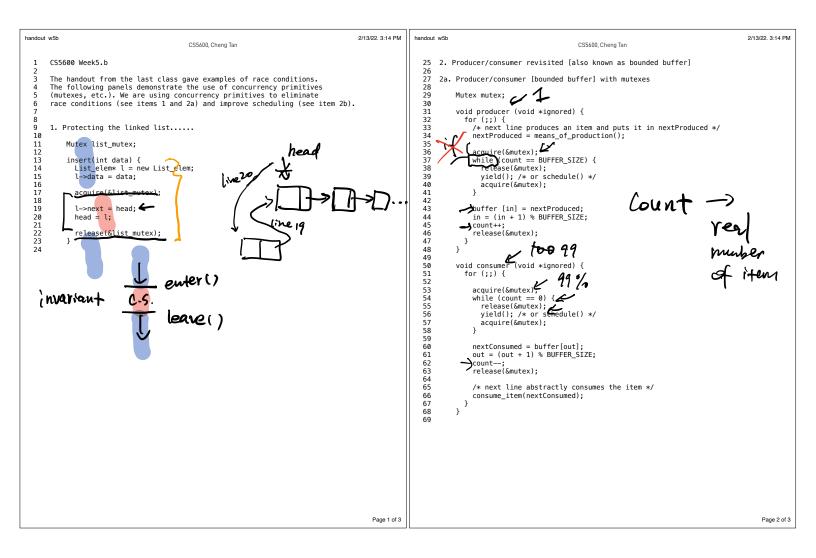

processis US. threads

void *f(void *xx) {
$$f \ge 4$$

 $sleep(1);$
printf("this is f\n"); Areae: this is main"
int main() { $f \le 4$
 $pthread_t tid;$
pthread_create(stid, NULL, (f, NULL);
X printf("this is main\n");
 $f = e_{s} + (b);$
Q? Dut put? ' this is f''
Q? Dut put? (this is main' (depends'
' this is f ', J);
 $g = e_{s} + (b);$
Q? Dut put? (this is f'', J);
 $g = e_{s} + (b);$
 $g = e_{s}$

SC: $\rightarrow W_1, W_2, R_1, R_2$

T1: W1(x)=1, R1(y)=2T2: W2(y)=2, R2(x)=1



9 dreduhijer Constrain Critical section D mutual exclusion €
 Progress 3 bounded waiting C.S. leave 1)/ white / release implement C.S. > atomic memory op bakery algo. Safe register fidoorwas RE W(1) Ono concurrent W, return balery 27 Concurrent W, val ticket module normal return any thing

MSage: 	Pthread
acquire(mutex_t* m) COLLET()	
release(mutex_t* m) & (eave()	
·	

<pre>ind thread secures () (here, was are upon the thread Accounts () (here, was are upon the temperatures that full address of a softer soft). This is presented by the approaches that full address of a softer soft). This is presented by the approaches that full address of a softer soft. (here was are upon the approaches that full soften softe</pre>	handout	v5a	CS5600, Cheng Tan	2/13/22. 3:12 PM	handout w5a	CS5600, Cheng Tan	2/13/22. 3:12 PM
	2 4 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 13 14 15 16 17 22 23 24 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 55 56 55 56	<pre>and thread B executes q abstractly. This examp under the word "thread" a. [this is pseudor int x; int main(int au tid tid1 = tid tid2 = thread_join printf("%d" } void f() { x = 1; thread_exif } void g() { x = 2; thread_exif } what are possif executed g()?: program above? b. Same question as follows int y = 12; f() { x = y + : g() { y = y + : cosame question as follows: int x = 0; f() { x = x + : g() { x =</pre>	<pre>te interleavings: say that thread A {)(). (Here, we are using the term "t le applies to any of the approaches '.) code] rgc, char** argv) { thread_create(f, NULL); thread_create(g, NULL); h(tid1); h(tid2); t(); t();</pre>	f() and B has tputs of the ined as	59 60 2. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84	<pre>inked list example struct List_elem { int data; struct List_elem* next; }; List_elem* head = 0; insert(int data) { List_elem* l = new List_elem; l->data = data; l->next = head; head = l; } What happens if two threads execute insert() at once and we get the following interleaving? thread 1: l->next = head thread 2: l->next = head</pre>	Page 2 of 4


```
handout w5b
                                                                                  2/13/22, 3:14 PM
                                        CS5600, Cheng Tan
 70
 71
      2b. Producer/consumer [bounded buffer] with mutexes and condition variables
 72
 73
           Mutex mutex;
 74
           Cond nonempty;
 75
           Cond nonfull:
 76
 77
           void producer (void *ignored) {
 78
             for (;;) {
 79
               /* next line produces an item and puts it in nextProduced */
 80
               nextProduced = means_of_production();
 81
 82
               acquire(&mutex);
               while (count == BUFFER SIZE)
 83
                 cond_wait(&nonfull, &mutex);
 84
 85
 86
               buffer [in] = nextProduced;
 87
               in = (in + 1) % BUFFER_SIZE;
 88
               count++:
 89
               cond_signal(&nonempty, &mutex);
 90
               release(&mutex);
 91
             }
 92
           }
 93
 94
           void consumer (void *ignored) {
 95
             for (;;) {
 96
 97
               acquire(&mutex);
 98
               while (count == 0)
 99
                 cond_wait(&nonempty, &mutex);
 100
 101
               nextConsumed = buffer[out];
 102
               out = (out + 1) % BUFFER SIZE:
 103
               count--:
               cond_signal(&nonfull, &mutex);
 104
 105
               release(&mutex);
 106
               /* next line abstractly consumes the item */
 107
 108
               consume_item(nextConsumed);
 109
             }
           }
 110
 111
 112
      Question: why does cond_wait need to both release the mutex and
 113
 114
      sleep? Why not:
 115
           while (count == BUFFER_SIZE) {
 116
 117
             release(&mutex);
 118
             cond_wait(&nonfull);
 119
             acquire(&mutex);
 120
           }
 121
                                                                                     Page 3 of 3
```