

Borrowed from Lamport, Leslie. "A new solution of Dijkstra's concurrent programming
problem." Concurrency: the Works of Leslie Lamport. 2019. 171-178.

N 45
door Is

yeah
baker 5 on 9 4

t I
i 1 j At i

1977 CACM

Borrowed from blog “Memory Consistency Model: A Tutorial”, James Bornholt.
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

WCA T WG31 1

RIB 0 Ig RCA D

TSO
so

f

butter
a

p
y 64143

512143

ABEL GMB
I

128GB

Borrowed from “Everything You Always Wanted to Know About Synchronization but Were Afraid to Ask”,
SOSP’13
https://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf

multi core CPU

E
N

Ee
no

48 80

Locores

1. Last time
2. Critical section
3. Bakery algorithm
4. Mutexes
5. Condition variables
6. Semaphores
--

zombie process Zombie thread

th
Y
forks 4yd federate

exit o

Faith zombie

fthread

joingtthreadexie.EE
I

É
process

process us
threads

 void *f(void *xx) {
 sleep(1);
 printf("this is f\n");
 exit(0);
 }

 int main(){
 pthread_t tid;
 pthread_create(&tid, NULL, f, NULL);
 pthread_join(tid, NULL); // line X
 printf("this is main\n");
 }

 T1: W1(x)=1, R1(y)=2
 T2: W2(y)=2, R2(x)=1

 T1: W1(x)=1, R1(y)=0
 T2: W2(y)=2, R2(x)=0

tze
me Answithis is main
t t

t t

ite
exitco

Q output this is f

Q output I this is main
depends

this is f th Bos

3 possible

SE
Wr Wa Ri Ra

RIN Wz
XY 0 Yes IT

so two

Critical section
mutual exclusion f

a cheder
Constraints

progress
bounded waiting

I entera lock acquire

if leave's unlock
release

implement CS

atomic memory op

bakery algo gaffe register

titty doorway
OF

É was

no concurrent W return
normal

I concurrent W Val

return anything

Matex
to

 mutex_t m

 mutex_init(mutex_t* m)

 acquire(mutex_t* m)

 release(mutex_t* m)

usage

p
y pthread

enter is

Leavell

Page 1 of 4

handout_w5a 2/13/22, 3:12 PM

1 1. Example to illustrate interleavings: say that thread A executes f()
2 and thread B executes g(). (Here, we are using the term "thread"
3 abstractly. This example applies to any of the approaches that fall
4 under the word "thread".)
5
6 a. [this is pseudocode]
7
8 int x;
9
10 int main(int argc, char** argv) {
11
12 tid tid1 = thread_create(f, NULL);
13 tid tid2 = thread_create(g, NULL);
14
15 thread_join(tid1);
16 thread_join(tid2);
17
18 printf("%d\n", x);
19
20 }
21
22 void f() {
23 x = 1;
24 thread_exit();
25 }
26
27 void g() {
28 x = 2;
29 thread_exit();
30 }
31
32 What are possible values of x after A has executed f() and B has
33 executed g()? In other words, what are possible outputs of the
34 program above?
35
36
37 b. Same question as above, but f() and g() are now defined as
38 follows
39
40 int y = 12;
41
42 f() { x = y + 1; }
43 g() { y = y * 2; }
44
45 What are the possible values of x?
46
47 c. Same question as above, but f() and g() are now defined as
48 follows:
49
50 int x = 0;
51
52 f() { x = x + 1; }
53 g() { x = x + 2; }
54
55 What are the possible values of x?
56
57

CS5600, Cheng Tan

Page 2 of 4

handout_w5a 2/13/22, 3:12 PM

58
59
60 2. Linked list example
61
62 struct List_elem {
63 int data;
64 struct List_elem* next;
65 };
66
67 List_elem* head = 0;
68
69 insert(int data) {
70 List_elem* l = new List_elem;
71 l−>data = data;
72 l−>next = head;
73 head = l;
74 }
75
76 What happens if two threads execute insert() at once and we get the
77 following interleaving?
78
79 thread 1: l->next = head
80 thread 2: l->next = head
81 thread 2: head = l;
82 thread 1: head = l;
83
84
85

CS5600, Cheng Tant

EH
DEMIleaves
t t 3

1 2 3

Page 1 of 3

handout_w5b 2/13/22, 3:14 PM

1 CS5600 Week5.b
2
3 The handout from the last class gave examples of race conditions.
4 The following panels demonstrate the use of concurrency primitives
5 (mutexes, etc.). We are using concurrency primitives to eliminate
6 race conditions (see items 1 and 2a) and improve scheduling (see item 2b).
7
8
9 1. Protecting the linked list......
10
11 Mutex list_mutex;
12
13 insert(int data) {
14 List_elem* l = new List_elem;
15 l−>data = data;
16
17 acquire(&list_mutex);
18
19 l−>next = head;
20 head = l;
21
22 release(&list_mutex);
23 }
24

CS5600, Cheng Tan

Page 2 of 3

handout_w5b 2/13/22, 3:14 PM

25 2. Producer/consumer revisited [also known as bounded buffer]
26
27 2a. Producer/consumer [bounded buffer] with mutexes
28
29 Mutex mutex;
30
31 void producer (void *ignored) {
32 for (;;) {
33 /* next line produces an item and puts it in nextProduced */
34 nextProduced = means_of_production();
35
36 acquire(&mutex);
37 while (count == BUFFER_SIZE) {
38 release(&mutex);
39 yield(); /* or schedule() */
40 acquire(&mutex);
41 }
42
43 buffer [in] = nextProduced;
44 in = (in + 1) % BUFFER_SIZE;
45 count++;
46 release(&mutex);
47 }
48 }
49
50 void consumer (void *ignored) {
51 for (;;) {
52
53 acquire(&mutex);
54 while (count == 0) {
55 release(&mutex);
56 yield(); /* or schedule() */
57 acquire(&mutex);
58 }
59
60 nextConsumed = buffer[out];
61 out = (out + 1) % BUFFER_SIZE;
62 count−−;
63 release(&mutex);
64
65 /* next line abstractly consumes the item */
66 consume_item(nextConsumed);
67 }
68 }
69

CS5600, Cheng Tan

I

head in

ÉII 1717117 Count
real

10099 number

99 of item
invariant Igs

enter

leaves

Page 3 of 3

handout_w5b 2/13/22, 3:14 PM

70
71 2b. Producer/consumer [bounded buffer] with mutexes and condition variables
72
73 Mutex mutex;
74 Cond nonempty;
75 Cond nonfull;
76
77 void producer (void *ignored) {
78 for (;;) {
79 /* next line produces an item and puts it in nextProduced */
80 nextProduced = means_of_production();
81
82 acquire(&mutex);
83 while (count == BUFFER_SIZE)
84 cond_wait(&nonfull, &mutex);
85
86 buffer [in] = nextProduced;
87 in = (in + 1) % BUFFER_SIZE;
88 count++;
89 cond_signal(&nonempty, &mutex);
90 release(&mutex);
91 }
92 }
93
94 void consumer (void *ignored) {
95 for (;;) {
96
97 acquire(&mutex);
98 while (count == 0)
99 cond_wait(&nonempty, &mutex);
100
101 nextConsumed = buffer[out];
102 out = (out + 1) % BUFFER_SIZE;
103 count−−;
104 cond_signal(&nonfull, &mutex);
105 release(&mutex);
106
107 /* next line abstractly consumes the item */
108 consume_item(nextConsumed);
109 }
110 }
111
112
113 Question: why does cond_wait need to both release the mutex and
114 sleep? Why not:
115
116 while (count == BUFFER_SIZE) {
117 release(&mutex);
118 cond_wait(&nonfull);
119 acquire(&mutex);
120 }
121

CS5600, Cheng Tan

