
20 Volume II: RISC-V Privileged Architectures V20211203

3.1.5 Hart ID Register mhartid

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the hardware
thread running the code. This register must be readable in any implementation. Hart IDs might
not necessarily be numbered contiguously in a multiprocessor system, but at least one hart must
have a hart ID of zero. Hart IDs must be unique within the execution environment.

MXLEN-1 0

Hart ID
MXLEN

Figure 3.5: Hart ID register (mhartid).

In certain cases, we must ensure exactly one hart runs some code (e.g., at reset), and so require
one hart to have a known hart ID of zero.

For e�ciency, system implementers should aim to reduce the magnitude of the largest hart
ID used in a system.

3.1.6 Machine Status Registers (mstatus and mstatush)

The mstatus register is an MXLEN-bit read/write register formatted as shown in Figure 3.6 for
RV32 and Figure 3.7 for RV64. The mstatus register keeps track of and controls the hart’s current
operating state. A restricted view of mstatus appears as the sstatus register in the S-level ISA.

31 30 23 22 21 20 19 18 17

SD WPRI TSR TW TVM MXR SUM MPRV
1 8 1 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XS[1:0] FS[1:0] MPP[1:0] VS[1:0] SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI
2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 3.6: Machine-mode status register (mstatus) for RV32.

63 62 38 37 36 35 34 33 32 31 23 22 21 20 19 18

SD WPRI MBE SBE SXL[1:0] UXL[1:0] WPRI TSR TW TVM MXR SUM
1 25 1 1 2 2 9 1 1 1 1 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPRV XS[1:0] FS[1:0] MPP[1:0] VS[1:0] SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI
1 2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 3.7: Machine-mode status register (mstatus) for RV64.

For RV32 only, mstatush is a 32-bit read/write register formatted as shown in Figure 3.8. Bits
30:4 of mstatush generally contain the same fields found in bits 62:36 of mstatus for RV64. Fields
SD, SXL, and UXL do not exist in mstatush.



Volume II: RISC-V Privileged Architectures V20211203 21

31 6 5 4 3 0

WPRI MBE SBE WPRI
26 1 1 4

Figure 3.8: Additional machine-mode status register (mstatush) for RV32.

3.1.6.1 Privilege and Global Interrupt-Enable Stack in mstatus register

Global interrupt-enable bits, MIE and SIE, are provided for M-mode and S-mode respectively.
These bits are primarily used to guarantee atomicity with respect to interrupt handlers in the
current privilege mode.

The global xIE bits are located in the low-order bits of mstatus, allowing them to be atomically
set or cleared with a single CSR instruction.

When a hart is executing in privilege mode x, interrupts are globally enabled when x IE=1 and
globally disabled when x IE=0. Interrupts for lower-privilege modes, w<x, are always globally
disabled regardless of the setting of any global wIE bit for the lower-privilege mode. Interrupts for
higher-privilege modes, y>x, are always globally enabled regardless of the setting of the global yIE
bit for the higher-privilege mode. Higher-privilege-level code can use separate per-interrupt enable
bits to disable selected higher-privilege-mode interrupts before ceding control to a lower-privilege
mode.

A higher-privilege mode y could disable all of its interrupts before ceding control to a lower-
privilege mode but this would be unusual as it would leave only a synchronous trap, non-maskable
interrupt, or reset as means to regain control of the hart.

To support nested traps, each privilege mode x that can respond to interrupts has a two-level
stack of interrupt-enable bits and privilege modes. xPIE holds the value of the interrupt-enable bit
active prior to the trap, and xPP holds the previous privilege mode. The xPP fields can only hold
privilege modes up to x, so MPP is two bits wide and SPP is one bit wide. When a trap is taken
from privilege mode y into privilege mode x, xPIE is set to the value of x IE; x IE is set to 0; and
xPP is set to y.

For lower privilege modes, any trap (synchronous or asynchronous) is usually taken at a higher
privilege mode with interrupts disabled upon entry. The higher-level trap handler will either
service the trap and return using the stacked information, or, if not returning immediately to
the interrupted context, will save the privilege stack before re-enabling interrupts, so only one
entry per stack is required.

An MRET or SRET instruction is used to return from a trap in M-mode or S-mode respectively.
When executing an xRET instruction, supposing xPP holds the value y, x IE is set to xPIE; the
privilege mode is changed to y; xPIE is set to 1; and xPP is set to the least-privileged supported
mode (U if U-mode is implemented, else M). If xPP 6=M, xRET also sets MPRV=0.

Setting xPP to the least-privileged supported mode on an xRET helps identify software bugs in
the management of the two-level privilege-mode stack.

Tan, Cheng



22 Volume II: RISC-V Privileged Architectures V20211203

xPP fields are WARL fields that can hold only privilege mode x and any implemented privilege
mode lower than x. If privilege mode x is not implemented, then xPP must be read-only 0.

M-mode software can determine whether a privilege mode is implemented by writing that mode
to MPP then reading it back.

If the machine provides only U and M modes, then only a single hardware storage bit is
required to represent either 00 or 11 in MPP.

3.1.6.2 Base ISA Control in mstatus Register

For RV64 systems, the SXL and UXL fields are WARL fields that control the value of XLEN for
S-mode and U-mode, respectively. The encoding of these fields is the same as the MXL field of
misa, shown in Table 3.1. The e↵ective XLEN in S-mode and U-mode are termed SXLEN and
UXLEN, respectively.

For RV32 systems, the SXL and UXL fields do not exist, and SXLEN=32 and UXLEN=32.

For RV64 systems, if S-mode is not supported, then SXL is read-only zero. Otherwise, it is a
WARL field that encodes the current value of SXLEN. In particular, an implementation may
make SXL be a read-only field whose value always ensures that SXLEN=MXLEN.

For RV64 systems, if U-mode is not supported, then UXL is read-only zero. Otherwise, it is a
WARL field that encodes the current value of UXLEN. In particular, an implementation may make
UXL be a read-only field whose value always ensures that UXLEN=MXLEN or UXLEN=SXLEN.

Whenever XLEN in any mode is set to a value less than the widest supported XLEN, all operations
must ignore source operand register bits above the configured XLEN, and must sign-extend results
to fill the entire widest supported XLEN in the destination register. Similarly, pc bits above XLEN
are ignored, and when the pc is written, it is sign-extended to fill the widest supported XLEN.

We require that operations always fill the entire underlying hardware registers with defined values
to avoid implementation-defined behavior.

To reduce hardware complexity, the architecture imposes no checks that lower-privilege modes
have XLEN settings less than or equal to the next-higher privilege mode. In practice, such
settings would almost always be a software bug, but machine operation is well-defined even in
this case.

If MXLEN is changed from 32 to a wider width, each of mstatus fields SXL and UXL, if not
restricted to a single value, gets the value corresponding to the widest supported width not wider
than the new MXLEN.

3.1.6.3 Memory Privilege in mstatus Register

The MPRV (Modify PRiVilege) bit modifies the e↵ective privilege mode, i.e., the privilege level
at which loads and stores execute. When MPRV=0, loads and stores behave as normal, using
the translation and protection mechanisms of the current privilege mode. When MPRV=1, load
and store memory addresses are translated and protected, and endianness is applied, as though


