
46 Volume II: RISC-V Privileged Architectures V20211203

New comparand is in a1:a0.

li t0, -1

la t1, mtimecmp

sw t0, 0(t1) # No smaller than old value.

sw a1, 4(t1) # No smaller than new value.

sw a0, 0(t1) # New value.

Figure 3.29: Sample code for setting the 64-bit time comparand in RV32, assuming a little-endian
memory system and that the registers live in a strongly ordered I/O region. Storing -1 to the
low-order bits of mtimecmp prevents mtimecmp from temporarily becoming smaller than the lesser
of the old and new values.

3.3 Machine-Mode Privileged Instructions

3.3.1 Environment Call and Breakpoint

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode
12 5 3 5 7

ECALL 0 PRIV 0 SYSTEM
EBREAK 0 PRIV 0 SYSTEM

The ECALL instruction is used to make a request to the supporting execution environment.
When executed in U-mode, S-mode, or M-mode, it generates an environment-call-from-U-mode
exception, environment-call-from-S-mode exception, or environment-call-from-M-mode exception,
respectively, and performs no other operation.

ECALL generates a di↵erent exception for each originating privilege mode so that environment
call exceptions can be selectively delegated. A typical use case for Unix-like operating systems is
to delegate to S-mode the environment-call-from-U-mode exception but not the others.

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debug-
ging environment. It generates a breakpoint exception and performs no other operation.

As described in the “C” Standard Extension for Compressed Instructions in Volume I of this
manual, the C.EBREAK instruction performs the same operation as the EBREAK instruction.

ECALL and EBREAK cause the receiving privilege mode’s epc register to be set to the address of
the ECALL or EBREAK instruction itself, not the address of the following instruction. As ECALL
and EBREAK cause synchronous exceptions, they are not considered to retire, and should not
increment the minstret CSR.

3.3.2 Trap-Return Instructions

Instructions to return from trap are encoded under the PRIV minor opcode.

Tan, Cheng

Tan, Cheng

Volume II: RISC-V Privileged Architectures V20211203 47

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode
12 5 3 5 7

MRET/SRET 0 PRIV 0 SYSTEM

To return after handling a trap, there are separate trap return instructions per privilege level,
MRET and SRET. MRET is always provided. SRET must be provided if supervisor mode is
supported, and should raise an illegal instruction exception otherwise. SRET should also raise an
illegal instruction exception when TSR=1 in mstatus, as described in Section 3.1.6.5. An xRET
instruction can be executed in privilege mode x or higher, where executing a lower-privilege xRET
instruction will pop the relevant lower-privilege interrupt enable and privilege mode stack. In
addition to manipulating the privilege stack as described in Section 3.1.6.1, xRET sets the pc to
the value stored in the xepc register.

If the A extension is supported, the xRET instruction is allowed to clear any outstanding LR
address reservation but is not required to. Trap handlers should explicitly clear the reservation if
required (e.g., by using a dummy SC) before executing the xRET.

If xRET instructions always cleared LR reservations, it would be impossible to single-step through
LR/SC sequences using a debugger.

3.3.3 Wait for Interrupt

The Wait for Interrupt instruction (WFI) provides a hint to the implementation that the current
hart can be stalled until an interrupt might need servicing. Execution of the WFI instruction
can also be used to inform the hardware platform that suitable interrupts should preferentially be
routed to this hart. WFI is available in all privileged modes, and optionally available to U-mode.
This instruction may raise an illegal instruction exception when TW=1 in mstatus, as described
in Section 3.1.6.5.

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode
12 5 3 5 7

WFI 0 PRIV 0 SYSTEM

If an enabled interrupt is present or later becomes present while the hart is stalled, the interrupt
trap will be taken on the following instruction, i.e., execution resumes in the trap handler and mepc

= pc + 4.

The following instruction takes the interrupt trap so that a simple return from the trap handler
will execute code after the WFI instruction.

The purpose of the WFI instruction is to provide a hint to the implementation, and so a legal
implementation is to simply implement WFI as a NOP.

