
Chapter 1

Introduction

This document describes the RISC-V privileged architecture, which covers all aspects of RISC-
V systems beyond the unprivileged ISA, including privileged instructions as well as additional
functionality required for running operating systems and attaching external devices.

Commentary on our design decisions is formatted as in this paragraph, and can be skipped if the
reader is only interested in the specification itself.

We briefly note that the entire privileged-level design described in this document could be replaced
with an entirely di↵erent privileged-level design without changing the unprivileged ISA, and pos-
sibly without even changing the ABI. In particular, this privileged specification was designed to
run existing popular operating systems, and so embodies the conventional level-based protection
model. Alternate privileged specifications could embody other more flexible protection-domain
models. For simplicity of expression, the text is written as if this was the only possible privileged
architecture.

1.1 RISC-V Privileged Software Stack Terminology

This section describes the terminology we use to describe components of the wide range of possible
privileged software stacks for RISC-V.

Figure 1.1 shows some of the possible software stacks that can be supported by the RISC-V archi-
tecture. The left-hand side shows a simple system that supports only a single application running
on an application execution environment (AEE). The application is coded to run with a particular
application binary interface (ABI). The ABI includes the supported user-level ISA plus a set of
ABI calls to interact with the AEE. The ABI hides details of the AEE from the application to al-
low greater flexibility in implementing the AEE. The same ABI could be implemented natively on
multiple di↵erent host OSs, or could be supported by a user-mode emulation environment running
on a machine with a di↵erent native ISA.

Our graphical convention represents abstract interfaces using black boxes with white text, to
separate them from concrete instances of components implementing the interfaces.

1



2 Volume II: RISC-V Privileged Architectures V20211203

Application
ABI
AEE

Application
ABI

OS
SBI
SEE

Application
ABI

SBI
Hypervisor

Application
ABI

OS

Application
ABI

Application
ABI

OS

Application
ABI

SBI

HBI
HEE

Figure 1.1: Di↵erent implementation stacks supporting various forms of privileged execution.

The middle configuration shows a conventional operating system (OS) that can support multipro-
grammed execution of multiple applications. Each application communicates over an ABI with
the OS, which provides the AEE. Just as applications interface with an AEE via an ABI, RISC-V
operating systems interface with a supervisor execution environment (SEE) via a supervisor binary
interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of
SBI function calls. Using a single SBI across all SEE implementations allows a single OS binary
image to run on any SEE. The SEE can be a simple boot loader and BIOS-style IO system in a
low-end hardware platform, or a hypervisor-provided virtual machine in a high-end server, or a
thin translation layer over a host operating system in an architecture simulation environment.

Most supervisor-level ISA definitions do not separate the SBI from the execution environment
and/or the hardware platform, complicating virtualization and bring-up of new hardware plat-
forms.

The rightmost configuration shows a virtual machine monitor configuration where multiple multi-
programmed OSs are supported by a single hypervisor. Each OS communicates via an SBI with
the hypervisor, which provides the SEE. The hypervisor communicates with the hypervisor execu-
tion environment (HEE) using a hypervisor binary interface (HBI), to isolate the hypervisor from
details of the hardware platform.

The ABI, SBI, and HBI are still a work-in-progress, but we are now prioritizing support for
Type-2 hypervisors where the SBI is provided recursively by an S-mode OS.

Hardware implementations of the RISC-V ISA will generally require additional features beyond the
privileged ISA to support the various execution environments (AEE, SEE, or HEE).

1.2 Privilege Levels

At any time, a RISC-V hardware thread (hart) is running at some privilege level encoded as a mode
in one or more CSRs (control and status registers). Three RISC-V privilege levels are currently
defined as shown in Table 1.1.

Privilege levels are used to provide protection between di↵erent components of the software stack,
and attempts to perform operations not permitted by the current privilege mode will cause an



Volume II: RISC-V Privileged Architectures V20211203 3

Level Encoding Name Abbreviation
0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

Table 1.1: RISC-V privilege levels.

exception to be raised. These exceptions will normally cause traps into an underlying execution
environment.

In the description, we try to separate the privilege level for which code is written, from the
privilege mode in which it runs, although the two are often tied. For example, a supervisor-
level operating system can run in supervisor-mode on a system with three privilege modes, but
can also run in user-mode under a classic virtual machine monitor on systems with two or
more privilege modes. In both cases, the same supervisor-level operating system binary code can
be used, coded to a supervisor-level SBI and hence expecting to be able to use supervisor-level
privileged instructions and CSRs. When running a guest OS in user mode, all supervisor-level
actions will be trapped and emulated by the SEE running in the higher-privilege level.

The machine level has the highest privileges and is the only mandatory privilege level for a RISC-V
hardware platform. Code run in machine-mode (M-mode) is usually inherently trusted, as it has
low-level access to the machine implementation. M-mode can be used to manage secure execution
environments on RISC-V. User-mode (U-mode) and supervisor-mode (S-mode) are intended for
conventional application and operating system usage respectively.

Each privilege level has a core set of privileged ISA extensions with optional extensions and variants.
For example, machine-mode supports an optional standard extension for memory protection. Also,
supervisor mode can be extended to support Type-2 hypervisor execution as described in Chapter 8.

Implementations might provide anywhere from 1 to 3 privilege modes trading o↵ reduced isolation
for lower implementation cost, as shown in Table 1.2.

Number of levels Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

Table 1.2: Supported combinations of privilege modes.

All hardware implementations must provide M-mode, as this is the only mode that has unfettered
access to the whole machine. The simplest RISC-V implementations may provide only M-mode,
though this will provide no protection against incorrect or malicious application code.

The lock feature of the optional PMP facility can provide some limited protection even with only
M-mode implemented.



4 Volume II: RISC-V Privileged Architectures V20211203

Many RISC-V implementations will also support at least user mode (U-mode) to protect the rest
of the system from application code. Supervisor mode (S-mode) can be added to provide isolation
between a supervisor-level operating system and the SEE.

A hart normally runs application code in U-mode until some trap (e.g., a supervisor call or a timer
interrupt) forces a switch to a trap handler, which usually runs in a more privileged mode. The hart
will then execute the trap handler, which will eventually resume execution at or after the original
trapped instruction in U-mode. Traps that increase privilege level are termed vertical traps, while
traps that remain at the same privilege level are termed horizontal traps. The RISC-V privileged
architecture provides flexible routing of traps to di↵erent privilege layers.

Horizontal traps can be implemented as vertical traps that return control to a horizontal trap
handler in the less-privileged mode.

1.3 Debug Mode

Implementations may also include a debug mode to support o↵-chip debugging and/or manufac-
turing test. Debug mode (D-mode) can be considered an additional privilege mode, with even more
access than M-mode. The separate debug specification proposal describes operation of a RISC-V
hart in debug mode. Debug mode reserves a few CSR addresses that are only accessible in D-mode,
and may also reserve some portions of the physical address space on a platform.


