
Volume II: RISC-V Privileged Architectures V20211203 79

4.3 Sv32: Page-Based 32-bit Virtual-Memory Systems

When Sv32 is written to the MODE field in the satp register (see Section 4.1.11), the supervisor
operates in a 32-bit paged virtual-memory system. In this mode, supervisor and user virtual
addresses are translated into supervisor physical addresses by traversing a radix-tree page table.
Sv32 is supported when SXLEN=32 and is designed to include mechanisms su�cient for supporting
modern Unix-based operating systems.

The initial RISC-V paged virtual-memory architectures have been designed as straightforward
implementations to support existing operating systems. We have architected page table layouts
to support a hardware page-table walker. Software TLB refills are a performance bottleneck on
high-performance systems, and are especially troublesome with decoupled specialized coprocessors.
An implementation can choose to implement software TLB refills using a machine-mode trap
handler as an extension to M-mode.

Some ISAs architecturally expose virtually indexed, physically tagged caches, in that accesses
to the same physical address via di↵erent virtual addresses might not be coherent unless the
virtual addresses lie within the same cache set. Implicitly, this specification does not permit
such behavior to be architecturally exposed.

4.3.1 Addressing and Memory Protection

Sv32 implementations support a 32-bit virtual address space, divided into 4KiB pages. An Sv32
virtual address is partitioned into a virtual page number (VPN) and page o↵set, as shown in
Figure 4.16. When Sv32 virtual memory mode is selected in the MODE field of the satp register,
supervisor virtual addresses are translated into supervisor physical addresses via a two-level page
table. The 20-bit VPN is translated into a 22-bit physical page number (PPN), while the 12-
bit page o↵set is untranslated. The resulting supervisor-level physical addresses are then checked
using any physical memory protection structures (Sections 3.7), before being directly converted to
machine-level physical addresses. If necessary, supervisor-level physical addresses are zero-extended
to the number of physical address bits found in the implementation.

For example, consider an RV32 system supporting 34 bits of physical address. When the value
of satp.MODE is Sv32, a 34-bit physical address is produced directly, and therefore no zero-
extension is needed. When the value of satp.MODE is Bare, the 32-bit virtual address is trans-
lated (unmodified) into a 32-bit physical address, and then that physical address is zero-extended
into a 34-bit machine-level physical address.

31 22 21 12 11 0

VPN[1] VPN[0] page o↵set
10 10 12

Figure 4.16: Sv32 virtual address.

Sv32 page tables consist of 210 page-table entries (PTEs), each of four bytes. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical page number of
the root page table is stored in the satp register.



80 Volume II: RISC-V Privileged Architectures V20211203

33 22 21 12 11 0

PPN[1] PPN[0] page o↵set
12 10 12

Figure 4.17: Sv32 physical address.

31 20 19 10 9 8 7 6 5 4 3 2 1 0

PPN[1] PPN[0] RSW D A G U X W R V
12 10 2 1 1 1 1 1 1 1 1

Figure 4.18: Sv32 page table entry.

The PTE format for Sv32 is shown in Figures 4.18. The V bit indicates whether the PTE is valid; if
it is 0, all other bits in the PTE are don’t-cares and may be used freely by software. The permission
bits, R, W, and X, indicate whether the page is readable, writable, and executable, respectively.
When all three are zero, the PTE is a pointer to the next level of the page table; otherwise, it is
a leaf PTE. Writable pages must also be marked readable; the contrary combinations are reserved
for future use. Table 4.5 summarizes the encoding of the permission bits.

X W R Meaning
0 0 0 Pointer to next level of page table.
0 0 1 Read-only page.
0 1 0 Reserved for future use.
0 1 1 Read-write page.
1 0 0 Execute-only page.
1 0 1 Read-execute page.
1 1 0 Reserved for future use.
1 1 1 Read-write-execute page.

Table 4.5: Encoding of PTE R/W/X fields.

Attempting to fetch an instruction from a page that does not have execute permissions raises a
fetch page-fault exception. Attempting to execute a load or load-reserved instruction whose e↵ective
address lies within a page without read permissions raises a load page-fault exception. Attempting
to execute a store, store-conditional, or AMO instruction whose e↵ective address lies within a page
without write permissions raises a store page-fault exception.

AMOs never raise load page-fault exceptions. Since any unreadable page is also unwritable,
attempting to perform an AMO on an unreadable page always raises a store page-fault exception.

The U bit indicates whether the page is accessible to user mode. U-mode software may only access
the page when U=1. If the SUM bit in the sstatus register is set, supervisor mode software may
also access pages with U=1. However, supervisor code normally operates with the SUM bit clear,
in which case, supervisor code will fault on accesses to user-mode pages. Irrespective of SUM, the
supervisor may not execute code on pages with U=1.

An alternative PTE format would support di↵erent permissions for supervisor and user. We
omitted this feature because it would be largely redundant with the SUM mechanism (see Sec-
tion 4.1.1.2) and would require more encoding space in the PTE.



Volume II: RISC-V Privileged Architectures V20211203 81

The G bit designates a global mapping. Global mappings are those that exist in all address spaces.
For non-leaf PTEs, the global setting implies that all mappings in the subsequent levels of the page
table are global. Note that failing to mark a global mapping as global merely reduces performance,
whereas marking a non-global mapping as global is a software bug that, after switching to an
address space with a di↵erent non-global mapping for that address range, can unpredictably result
in either mapping being used.

Global mappings need not be stored redundantly in address-translation caches for multiple
ASIDs. Additionally, they need not be flushed from local address-translation caches when an
SFENCE.VMA instruction is executed with rs26=x0.

The RSW field is reserved for use by supervisor software; the implementation shall ignore this field.

Each leaf PTE contains an accessed (A) and dirty (D) bit. The A bit indicates the virtual page has
been read, written, or fetched from since the last time the A bit was cleared. The D bit indicates
the virtual page has been written since the last time the D bit was cleared.

Two schemes to manage the A and D bits are permitted:

When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, a
page-fault exception is raised.

When a virtual page is accessed and the A bit is clear, or is written and the D bit is clear, the
implementation sets the corresponding bit(s) in the PTE. The PTE update must be atomic
with respect to other accesses to the PTE, and must atomically check that the PTE is valid
and grants su�cient permissions. Updates of the A bit may be performed as a result of
speculation, but updates to the D bit must be exact (i.e., not speculative), and observed in
program order by the local hart. Furthermore, the PTE update must appear in the global
memory order no later than the explicit memory access, or any subsequent explicit memory
access to that virtual page by the local hart. The ordering on loads and stores provided by
FENCE instructions and the acquire/release bits on atomic instructions also orders the PTE
updates associated with those loads and stores as observed by remote harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform
the explicit memory access before the PTE update is globally visible.

All harts in a system must employ the same PTE-update scheme as each other.

Prior versions of this specification required PTE A bit updates to be exact, but allowing the A
bit to be updated as a result of speculation simplifies the implementation of address translation
prefetchers. System software typically uses the A bit as a page replacement policy hint, but
does not require exactness for functional correctness. On the other hand, D bit updates are
still required to be exact and performed in program order, as the D bit a↵ects the functional
correctness of page eviction.

Implementations are of course still permitted to perform both A and D bit updates only in
an exact manner.

In both cases, requiring atomicity ensures that the PTE update will not be interrupted by
other intervening writes to the page table, as such interruptions could lead to A/D bits being set
on PTEs that have been reused for other purposes, on memory that has been reclaimed for other
purposes, and so on. Simple implementations may instead generate page-fault exceptions.



82 Volume II: RISC-V Privileged Architectures V20211203

The A and D bits are never cleared by the implementation. If the supervisor software does
not rely on accessed and/or dirty bits, e.g. if it does not swap memory pages to secondary storage
or if the pages are being used to map I/O space, it should always set them to 1 in the PTE to
improve performance.

Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv32 supports 4 MiBmegapages.
A megapage must be virtually and physically aligned to a 4 MiB boundary; a page-fault exception
is raised if the physical address is insu�ciently aligned.

For non-leaf PTEs, the D, A, and U bits are reserved for future standard use. Until their use is
defined by a standard extension, they must be cleared by software for forward compatibility.

For implementations with both page-based virtual memory and the “A” standard extension, the
LR/SC reservation set must lie completely within a single base page (i.e., a naturally aligned 4KiB
region).

4.3.2 Virtual Address Translation Process

A virtual address va is translated into a physical address pa as follows:

1. Let a be satp.ppn⇥ PAGESIZE, and let i = LEVELS� 1. (For Sv32, PAGESIZE=212 and
LEVELS=2.) The satp register must be active, i.e., the e↵ective privilege mode must be
S-mode or U-mode.

2. Let pte be the value of the PTE at address a+va.vpn[i]⇥PTESIZE. (For Sv32, PTESIZE=4.)
If accessing pte violates a PMA or PMP check, raise an access-fault exception corresponding
to the original access type.

3. If pte.v = 0, or if pte.r = 0 and pte.w = 1, or if any bits or encodings that are reserved for
future standard use are set within pte, stop and raise a page-fault exception corresponding
to the original access type.

4. Otherwise, the PTE is valid. If pte.r = 1 or pte.x = 1, go to step 5. Otherwise, this PTE is a
pointer to the next level of the page table. Let i = i� 1. If i < 0, stop and raise a page-fault
exception corresponding to the original access type. Otherwise, let a = pte.ppn⇥PAGESIZE
and go to step 2.

5. A leaf PTE has been found. Determine if the requested memory access is allowed by the
pte.r, pte.w, pte.x, and pte.u bits, given the current privilege mode and the value of the
SUM and MXR fields of the mstatus register. If not, stop and raise a page-fault exception
corresponding to the original access type.

6. If i > 0 and pte.ppn[i� 1 : 0] 6= 0, this is a misaligned superpage; stop and raise a page-fault
exception corresponding to the original access type.

7. If pte.a = 0, or if the original memory access is a store and pte.d = 0, either raise a page-fault
exception corresponding to the original access type, or:

If a store to pte would violate a PMA or PMP check, raise an access-fault exception
corresponding to the original access type.



Volume II: RISC-V Privileged Architectures V20211203 83

Perform the following steps atomically:

– Compare pte to the value of the PTE at address a+ va.vpn[i]⇥ PTESIZE.

– If the values match, set pte.a to 1 and, if the original memory access is a store, also
set pte.d to 1.

– If the comparison fails, return to step 2

8. The translation is successful. The translated physical address is given as follows:

pa.pgo↵ = va.pgo↵.

If i > 0, then this is a superpage translation and pa.ppn[i� 1 : 0] = va.vpn[i� 1 : 0].

pa.ppn[LEVELS� 1 : i] = pte.ppn[LEVELS� 1 : i].

All implicit accesses to the address-translation data structures in this algorithm are performed
using width PTESIZE.

This implies, for example, that an Sv48 implementation may not use two separate 4B reads to
non-atomically access a single 8B PTE, and that A/D bit updates performed by the implemen-
tation are treated as atomically updating the entire PTE, rather than just the A and/or D bit
alone (even though the PTE value does not otherwise change).

The results of implicit address-translation reads in step 2 may be held in a read-only, incoherent
address-translation cache but not shared with other harts. The address-translation cache may hold
an arbitrary number of entries, including an arbitrary number of entries for the same address and
ASID. Entries in the address-translation cache may then satisfy subsequent step 2 reads if the
ASID associated with the entry matches the ASID loaded in step 0 or if the entry is associated
with a global mapping. To ensure that implicit reads observe writes to the same memory loca-
tions, an SFENCE.VMA instruction must be executed after the writes to flush the relevant cached
translations.

The address-translation cache cannot be used in step 7; accessed and dirty bits may only be updated
in memory directly.

It is permitted for multiple address-translation cache entries to co-exist for the same address.
This represents the fact that in a conventional TLB hierarchy, it is possible for multiple entries
to match a single address if, for example, a page is upgraded to a superpage without first clearing
the original non-leaf PTE’s valid bit and executing an SFENCE.VMA with rs1=x0, or if multiple
TLBs exist in parallel at a given level of the hierarchy. In this case, just as if an SFENCE.VMA
is not executed between a write to the memory-management tables and subsequent implicit read
of the same address: it is unpredictable whether the old non-leaf PTE or the new leaf PTE is
used, but the behavior is otherwise well defined.

Implementations may also execute the address-translation algorithm speculatively at any time,
for any virtual address, as long as satp is active (as defined in Section 4.1.11). Such speculative
executions have the e↵ect of pre-populating the address-translation cache.

Speculative executions of the address-translation algorithm behave as non-speculative executions
of the algorithm do, except that they must not set the dirty bit for a PTE, they must not trigger
an exception, and they must not create address-translation cache entries if those entries would
have been invalidated by any SFENCE.VMA instruction executed by the hart since the speculative
execution of the algorithm began.



84 Volume II: RISC-V Privileged Architectures V20211203

For instance, it is illegal for both non-speculative and speculative executions of the translation
algorithm to begin, read the level 2 page table, pause while the hart executes an SFENCE.VMA
with rs1=rs2=x0, then resume using the now-stale level 2 PTE, as subsequent implicit reads
could populate the address-translation cache with stale PTEs.

In many implementations, an SFENCE.VMA instruction with rs1=x0 will therefore either
terminate all previously-launched speculative executions of the address-translation algorithm (for
the specified ASID, if applicable), or simply wait for them to complete (in which case any
address-translation cache entries created will be invalidated by the SFENCE.VMA as appro-
priate). Likewise, an SFENCE.VMA instruction with rs16=x0 generally must either ensure that
previously-launched speculative executions of the address-translation algorithm (for the specified
ASID, if applicable) are prevented from creating new address-translation cache entries mapping
leaf PTEs, or wait for them to complete.

A consequence of implementations being permitted to read the translation data structures
arbitrarily early and speculatively is that at any time, all page table entries reachable by executing
the algorithm may be loaded into the address-translation cache.

Although it would be uncommon to place page tables in non-idempotent memory, there is no
explicit prohibition against doing so. Since the algorithm may only touch page tables reachable
from the root page table indicated in satp, the range of addresses that an implementation’s page
table walker will touch is fully under supervisor control.

The algorithm does not admit the possibility of ignoring high-order PPN bits for implementations
with narrower physical addresses.

4.4 Sv39: Page-Based 39-bit Virtual-Memory System

This section describes a simple paged virtual-memory system for SXLEN=64, which supports 39-
bit virtual address spaces. The design of Sv39 follows the overall scheme of Sv32, and this section
details only the di↵erences between the schemes.

We specified multiple virtual memory systems for RV64 to relieve the tension between providing
a large address space and minimizing address-translation cost. For many systems, 512GiB of
virtual-address space is ample, and so Sv39 su�ces. Sv48 increases the virtual address space
to 256TiB, but increases the physical memory capacity dedicated to page tables, the latency
of page-table traversals, and the size of hardware structures that store virtual addresses. Sv57
increases the virtual address space, page table capacity requirement, and translation latency even
further.

4.4.1 Addressing and Memory Protection

Sv39 implementations support a 39-bit virtual address space, divided into 4KiB pages. An Sv39
address is partitioned as shown in Figure 4.19. Instruction fetch addresses and load and store
e↵ective addresses, which are 64 bits, must have bits 63–39 all equal to bit 38, or else a page-fault
exception will occur. The 27-bit VPN is translated into a 44-bit PPN via a three-level page table,
while the 12-bit page o↵set is untranslated.


