
Week 3.b
CS6640
09/21 2023
https://naizhengtan.github.io/23fall/

1. normal vs. kernel debugging
2. Memory layout in egos
3. gdb
4. a tricky bug

 * "normal" C program
 + you do not need to understand hardware details (like CPU)
 + you have clear error messages
 + you do not have to worry about touching important memory
 (the program will be killed)
 + you do not use addresses directly
 + you have a nice address space containing your program only
 + you have a lot of tools (like IDE)

 * kernel programming
 - you need to understand hardware details (like CPU)
 - you have semi-clear error messages (if you know CPU)
 - your have to worry about touching important memory
 (the kernel will write something to there and later crash)
 - you sometimes need to use addresses directly
 - you do not have a nice address space
 - you have limited yet powerful tools

Q How do people debag C program

void addr deadbeef

Segfault

0580 F
O

gdb

Q ULT Tfauzdanger
tie

05.0

Igdb
gem

debugger

Kerneldebugging principles fool in XYZ's
precondASSERTXYZ Idie eariler

L use ASSERT more often Dog
Use print Roshi ASSERT ret D

but not trust it

binary piintf is useful

static analysis more often
use fit diff

egos designor

earth abstract HW
grass provide services

apps Sys apps basic functionalities

user apps hellowork cult

sht she
makegenesdb riser gdb

estop 6640

Lgdb C
f cart c

Estopy
Crabs quit

Page 1 of 2

handout_w3b 9/21/23, 11:31 AM

CS6640 Handout Week3.b

1. egos-2k+ memory layout

HIGH MEM ADDR
------- +----------------------+ <- 0x8040_0000
 | | [FREE_MEM_END]
 DTIM | free memory |
memory | (4MB - 16KB) |
 (4MB) +----------------------+ <- 0x8000_4000
 | earth interface | [FREE_MEM_START]
 | (128B) |
 +----------------------+ <- 0x8000_3f80
 | earth/grass stack | [GRASS_STACK_TOP]
 | (~8KB) |
 \/\/\/\/\/\/\/\/\/\/\/\/

 /\/\/\/\/\/\/\/\/\/\/\/\
 | grass interface |
 +----------------------+ <- 0x8000_2000
 | app stack | [APPS_STACK_TOP]
 | (6KB) |
 +----------------------+ <- 0x8000_0800
 | system call args |
 | (1KB) |
 +----------------------+ <- 0x8000_0400
 | app args | [SYSCALL_ARG]
 | (1KB) |
------- +----------------------+ <- 0x8000_0000
 [APPS_ARG]

 ...
------- +----------------------+ <- 0x0a00_0000
 | | [ITIM_END]
 \/\/\/\/\/\/\/\/\/\/\/\/

 /\/\/\/\/\/\/\/\/\/\/\/\
 | |
 +----------------------+ <- 0x0820_4000
 ITIM | app code+data | [APPS_ENTRY+APPS_SIZE]
 (32MB) | (16KB) |
 +----------------------+ <- 0x0820_0000
 | grass code+data | [APPS_ENTRY]
 | (1 MB) |
 +----------------------+ <- 0x0810_0000
 | earth data | [GRASS_ENTRY]
 | (1 MB) |
------- +----------------------+ <- 0x0800_0000
LOW MEM ADDR [ITIM_START]

Cheng Tan, CS6640

Page 2 of 2

handout_w3b 9/21/23, 11:31 AM

2. gdb cheat sheet

Breakpoints & watchpoints
(gdb) break main set a breakpoint on a function
(gdb) break ult.c:10 set breakpoint at file and line (or function)
(gdb) info breakpoints show breakpoints
(gdb) delete 1 delete a breakpoint by number
(gdb) watch expression set software watchpoint on variable
(gdb) info watchpoints show current watchpoints

Running the program
(gdb) c continue the program
(gdb) s a step in C; step into functions
(gdb) si a step in asm; step into functions
(gdb) n a step in C; step over functions
(gdb) ni a step in asm; but step over functions
(gdb) CTRL-C actually SIGINT, stop execution of current program
(gdb) finish finish current function's execution

Stack backtrace
(gdb) bt print stack backtrace
(gdb) info locals print automatic variables in frame
(gdb) info registers print registers sans floats

Browsing Data
(gdb) p expr print expression
(gdb) p/x expr print in hex
(gdb) p/t expr print in binary
(gdb) p/i expr print as instructions

(gdb) x/FMT address low-level examine command
(gdb) x/x 0x80001000 print memory in hex
(gdb) set var = expr assign value

(gdb) display/FMT expr display expression result at stop
(gdb) display/i $pc print next instruction
(gdb) undisplay delete displays

FMT (Format letters) are:
 o(octal), x(hex), d(decimal), u(unsigned decimal),
 t(binary), f(float), a(address), i(instruction), c(char), s(string)
 and z(hex, zero padded on the left).

Load a program's symbols
(gdb) add-symbol-file <elf> load symbol table from <elf>

History Display
(gdb) show commands print command history

[borrowed and customized from
 https://gist.github.com/rkubik/b96c23bd8ed58333de37f2b8cd052c30]

Cheng Tan, CS6640

E

D

D DX 081010500

Physical memory
CPU under the cooling fan

Memory
* Images from https://www.123rf.com/

queue t

IT EFFIE na

IF IF EFFIE man

Physical memory

* https://www.youtube.com/watch?v=Mjb12GCKycw

Intel i7 CPU

