Week 7.b CS6640
10/19 2023
https://naizhengtan.github.io/23fall/

1. Memory protection, the problem statement
2. Segmentation (x86-32)
3. PMP (RISC-V)
4. Paging (brief)
5. Meltdown \& its consequences
6. Other possible solutions

Q: Motivation?

- a process $A \longrightarrow$ process B^{\prime} 's memory
- process \longrightarrow Kernel/invalid
- process \longrightarrow menory (bug) \nVdash
(code $\xrightarrow{v / w x}$ memory should not access)
- access control

$$
\text { Subj access } \xrightarrow{\text { Control }}
$$

$\mathrm{CPU} \xrightarrow{O P}$ memory
subj: instruction + C+X
op: $r / w / x$
obj: a set of memory addresses

$$
\text { WHy } O P=V / w / x, \text { why obj }=\text { addresses? }
$$

mem a fix -sired array (bytes) ${ }^{>}$instruction \rightarrow memory

(1)

- a bag of bytes
- randoms get
(2)
named registers"

- memory protection: Yes/no question

$$
\underset{c+x}{\text { instruction }+} \xrightarrow{r / \omega / x} \underset{\substack{\text { manor } \\ \text { addresses }}}{\text { m. }}
$$

- Solution: ACL
(subj) $\xrightarrow{\text { access }} \underset{\text { (bi })}{ }$

$$
4 \widehat{A C L}
$$

Multiple questions:
Q1: what are memory objs? (memory granularity)
Q2: who is the subj? (how to define subj)
Q3: where to store the ACL?
2. x 86 segmentation

- history:

$$
\begin{aligned}
& \text { stony: } \\
& .1978,8086(16-b i t) \rightarrow 2^{16} B=69 k B
\end{aligned}
$$

read address:
(base < <4) + offset
$\frac{c P U}{\frac{c}{\text { bare }}=0 \text { to po }}$
offset $=0 \times f$

$$
\rightarrow 0 \times 10000+0 \times f
$$

$$
\begin{aligned}
& =0 \times 1000 \\
& \cdot \times 86-32(80386)
\end{aligned}
$$

Q1: what is the granularity of memory obj?
seqmect (base, limit)

Q2: how to define the subj?

$$
i n s t r+C D L
$$

Q3: where to store the ACL?
Memory (descriptor table) + register

Figure 3-2. Flat Model

figure 3-1. Segmentation and Paging
3. $\operatorname{PMP}(R \cup-32)$

- PMP config reqisters $(16 \times 4$
- PMP addr reqisters (64)

Figure 3.31: RV32 PMP configuration CSR layout.

Figure 3.35: PMP configuration register format.

Q1: what is the granularity of memory obj?
"Segment" (sadr, implicity (imit)
Q2: how to define the subj?
instruction
Q3: where to store the ACL?
reqisters.
4. paging (brief)

- 1962, swap in/out pages.
- Cater, add memory protection.

$$
\rightarrow \text { Oxdeadbeef }
$$

Q1: what is the granularity of memory obj?

$$
\text { page }(4 k B)
$$

Q2: how to define the subj?

$$
\text { instr }+ \text { Priv Level }+\mathrm{Cr} 3 / \mathrm{satp}
$$

Q3: where to store the ACL?
page table (memory)

5. Meltdown \& its consequences

(a) Percentage Change in Test Latency Relative to v4.0

 big-write

 med-munmap $-29: 31: 36: 27: 23: 19: 19: 17: 18: 4: 10 ;-3: 15: 13: 31: 32: 14: 4: 1: 2: 0:-4:-4:-3:-4:-1: 0:-1: 1: 3: 3: 5: 4 \vdots 6: 63: 73: 70: 69: 68: 68: 68$

big-pagefault

(b) Enabled Changes

6. Capability-based processor (a wild idea)
memory protection \rightarrow Access Control problem $\downarrow \ll ?$
 "capability" \leftarrow key

