
Week 5.a
CS5600
02/06 2023
https://naizhengtan.github.io/23spring/

1. Last time
2. More about scheduling
3. Scheduling problem today
4. Scheduling lessons and conclusions
5. Threads
6. Intro to concurrency
7. Memory consistency model
--

 - Votes from last time:
 (with candidate >=5 votes)

 "Best Turnaround Time": STCF (46)

 "Best Response Time": RR (31), MLFQ (11), STCF (9)

 "Best Fairness": MLFQ (22), lottery (19), RR (7)

 "Most popular algorithm": MLFQ (24), lottery (10), STCF (9)

I projector didn't work at themoment

I

- Incorporating I/O

 P1, P2: both CPU bound, run for a week
 P3: I/O bound, loop
 (1 ms of CPU, 10 ms of disk I/O)

 process arrival running
 P1 0 1 week
 P2 0 1 week
 P3 0 30 sec (with 300sec I/O)

 by itself, P3 uses ~90% of disk
 By itself, P1 or P2 uses 100% of CPU

 Question: what happens if we use FIFO? (arrival: P1, P2, P3)

 Question: what about RR with 100msec time slice?

 Question: what about RR with 1msec time slice?

 Question: what about STCF?

MLFQ
e i the

K

A you will get your handout in 2Weeks

CPU teeth 7
disk
utilf

25 Item
context 1000tresses
switch

T2 starves

Limy EE
lottery stride

in E
PI PL PP R P P Pz

5To

Threads

 Interface to threads:

 tid thread_create (void (*fn) (void *), void *);

 void thread_exit ();

 void thread_join (tid thr);

 A toy example:

 void f() {...}
 void g() {...}

 int main() {
 thread_create(f, NULL)
 thread_create(g, NULL)
 ...
 }

exit l

9 j I

j

wt

I
chip

7

ftp.ADF
ain

yyg
I

- Why is concurrency hard?

 int main()
 {
 fork();
 fork();
 printf("\nhello world");
 }

fries

EYIt
forks fork's

Militia exit PEY 43 e4

Q What's on your screen

I
hello world n
hello worldly

11 world Xe

th th th th
helloworld helloworld helloworld helloworld

Page 1 of 4

handout_w5a 2/6/23, 9:31 AM

1 1. Example to illustrate interleavings: say that thread A executes f()
2 and thread B executes g(). (Here, we are using the term "thread"
3 abstractly. This example applies to any of the approaches that fall
4 under the word "thread".)
5
6 a. [this is pseudocode]
7
8 int x;
9
10 int main(int argc, char** argv) {
11
12 tid tid1 = thread_create(f, NULL);
13 tid tid2 = thread_create(g, NULL);
14
15 thread_join(tid1);
16 thread_join(tid2);
17
18 printf("%d\n", x);
19
20 }
21
22 void f() {
23 x = 1;
24 thread_exit();
25 }
26
27 void g() {
28 x = 2;
29 thread_exit();
30 }
31
32 What are possible values of x after A has executed f() and B has
33 executed g()? In other words, what are possible outputs of the
34 program above?
35
36
37 b. Same question as above, but f() and g() are now defined as
38 follows
39
40 int y = 12;
41
42 f() { x = y + 1; }
43 g() { y = y * 2; }
44
45 What are the possible values of x?
46
47 c. Same question as above, but f() and g() are now defined as
48 follows:
49
50 int x = 0;
51
52 f() { x = x + 1; }
53 g() { x = x + 2; }
54
55 What are the possible values of x?
56
57

CS5600, Cheng Tan

Page 2 of 4

handout_w5a 2/6/23, 9:31 AM

58
59
60 2. Linked list example
61
62 struct List_elem {
63 int data;
64 struct List_elem* next;
65 };
66
67 List_elem* head = 0;
68
69 insert(int data) {
70 List_elem* l = new List_elem;
71 l−>data = data;
72 l−>next = head;
73 head = l;
74 }
75
76 What happens if two threads execute insert() at once and we get the
77 following interleaving?
78
79 thread 1: l->next = head
80 thread 2: l->next = head
81 thread 2: head = l;
82 thread 1: head = l;
83
84
85

CS5600, Cheng Tan

idk I
it

