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1. Last time
2. More about scheduling
3. Scheduling problem today
4. Scheduling lessons and conclusions
5. Threads
6. Intro to concurrency
7. Memory consistency model
----------------------------------------

  - Votes from last time:
      (with candidate >=5 votes)

      "Best Turnaround Time":   STCF (46)

      "Best Response Time":     RR (31), MLFQ (11), STCF (9)

      "Best Fairness":          MLFQ (22), lottery (19), RR (7)

      "Most popular algorithm": MLFQ (24), lottery (10), STCF (9)
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- Incorporating I/O

  P1, P2: both CPU bound, run for a week
  P3: I/O bound, loop
      (1 ms of CPU, 10 ms of disk I/O)
  
  process      arrival     running
  P1           0             1 week
  P2           0             1 week
  P3           0             30 sec (with 300sec I/O)
  
  by itself, P3 uses ~90% of disk
  By itself, P1 or P2 uses 100% of CPU
  
  
  Question: what happens if we use FIFO? (arrival: P1, P2, P3)

  
  Question: what about RR with 100msec time slice?

  
  Question: what about RR with 1msec time slice?

  
  Question: what about STCF?
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    Interface to threads:

        tid thread_create (void (*fn) (void *), void *); 

        void thread_exit (); 

        void thread_join (tid thr); 

    A toy example:

      void f() {...}
      void g() {...}

      int main() {
        thread_create(f, NULL)
        thread_create(g, NULL)
        ...
      }
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- Why is concurrency hard?

  int main()
  {
      fork();
      fork();
      printf("\nhello world");
  }
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1   1. Example to illustrate interleavings: say that thread A executes f()
2   and thread B executes g(). (Here, we are using the term "thread"
3   abstractly. This example applies to any of the approaches that fall
4   under the word "thread".)
5   
6       a. [this is pseudocode]
7   
8           int x;
9   
10          int main(int argc, char** argv) {
11          
12              tid tid1 = thread_create(f, NULL);
13              tid tid2 = thread_create(g, NULL);
14  
15              thread_join(tid1);
16              thread_join(tid2);
17  
18              printf("%d\n", x);
19  
20          }
21  
22          void f() {
23              x = 1;
24              thread_exit();
25          }
26  
27          void g() {
28              x = 2;
29              thread_exit();
30          }
31  
32          What are possible values of x after A has executed f() and B has
33          executed g()? In other words, what are possible outputs of the
34          program above?
35  
36          
37      b. Same question as above, but f() and g() are now defined as
38      follows
39  
40          int y = 12;
41  
42          f() { x = y + 1; }
43          g() { y = y * 2; }
44  
45          What are the possible values of x?
46  
47      c. Same question as above, but f() and g() are now defined as
48      follows:
49  
50          int x = 0;
51  
52          f() { x = x + 1; }
53          g() { x = x + 2; }
54  
55          What are the possible values of x?
56  
57   
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58 
59  
60  2. Linked list example
61  
62      struct List_elem {
63          int data;
64          struct List_elem* next;
65      };
66  
67      List_elem* head = 0;
68  
69      insert(int data) {
70          List_elem* l = new List_elem;
71          l−>data = data;
72          l−>next = head;
73          head = l;
74      }
75  
76      What happens if two threads execute insert() at once and we get the
77      following interleaving?
78  
79      thread 1: l->next = head
80      thread 2: l->next = head
81      thread 2: head = l;
82      thread 1: head = l;
83  
84  
85  
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