Core in Page Table Translation

Review of Symbols

- Basic Parameters
- $\mathbf{N}=\mathbf{2}^{\mathbf{n}}$: Number of addresses in virtual address space
- $\mathbf{M}=\mathbf{2}^{\mathbf{m}}$: Number of addresses in physical address space
- $\mathbf{P}=2^{\mathbf{p}}$: Page size (bytes)
- Components of the virtual address (VA)
- TLBI: TLB index
- TLBT: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number
- Components of the physical address (PA)
- PPO: Physical page offset (same as VPO)
- PPN: Physical page number
- CO: Byte offset within cache line
- CI: Cache index
- CT: Cache tag

Each entry references a 4 K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).
R/W: Read-only or read-write access access permission for all reachable pages.
U/S: user or supervisor (kernel) mode access permission for all reachable pages.
WT: Write-through or write-back cache policy for the child page table.
A: Reference bit (set by MMU on reads and writes, cleared by software).
S: Page size: if bit set, we have 2 MB or 1 GB pages (bit can be set in Level 2 and 3 PTEs only).
Page table physical base address: 40 most significant bits of physical page table address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Core i7 Level 4 Page Table Entries

63	5251	1211		8	6	5	4	3	2	1	0
XD	Unused	Page physical base address	Unused	G	D	A	CD	WT	U/S	R/W	$\mathrm{P}=1$

Each entry references a 4 K child page. Significant fields:

P: Child page is present in memory (1) or not (0)
R/W: Read-only or read-write access permission for this page
U/S: User or supervisor mode access
WT: Write-through or write-back cache policy for this page
A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)
Page physical base address: 40 most significant bits of physical page address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

03/13 2023

1. Last time
2. x86-64: addresses

- virtual
- physical

3. x86-64: page table structures
. Practice
Adunin

- midterm
- Lab4.
- Castime
- VM

$$
\begin{aligned}
& V A \rightarrow P A \\
& \text { - Pasing } \\
& \text { VPN } \rightarrow \text { PPN } \\
& \text { ven } \\
& N=2^{36}
\end{aligned}
$$

 48 bit VA

- Multi-luel PI (TVeo) PA dafe pase (4KB)
$512 \stackrel{L_{2}}{i}$
-- Question: Given one page can have 512 pointers,
if we need to map 2 MB memory, how would the tree look like?

$$
V A:[0, \underbrace{2 \cdot 2^{20}-1}] \text { \#page }=\frac{2 M B}{4 k B}=512
$$

$4+512$

- ouestroget if pages pages pagers 10.24
memory), how large would the PT be?

(meaning mapped $\frac{2 \times(48)}{\boxed{\nearrow}}$) Bytes $V A \longdiv { 1 2 }$ date i i 2^{36} Page vair pages

ス4゙ァ

$$
\begin{aligned}
& =2^{27} \cdot 2^{9} \text { pointers } \\
& =2^{36}
\end{aligned}
$$

