
CS 3650 Spring 2024 February 9, 2024

Assignment 4 – Stack frame
Question 1: Stack frame and stack pointer

Consider the code below, and give answers to the following questions.

char *qbuf(int n) {
char buf[16];
sprintf(buf, "%d", n);
return buf;

}

int main(...) {
int exitstatus = 0;
char *tokens[32];
int n_tokens = parse(..., tokens, 32, ...);
...
for (i = 0; i < n_tokens; i++)

if (!strcmp(tokens[i], "$?"))
tokens[i] = qbuf(exitstatus);

for (i = 0; i < n_tokens; i++)
printf("%s\n", tokens[i]);

}

Please explain in terms of the stack frame layout and stack pointer location when calling
qbuf() and printf().

a). Is it guaranteed to operate properly? I.e. given a line “echo $? X Y” will it print out the
lines “echo”, “0”, “X”, and “Y”?

1

CS 3650 Spring 2024 February 9, 2024

b). Is it likely/unlikely to crash in printf? Note that it would only crash if a bad pointer was
passed to printf - it won’t crash if it points to the wrong data.

2

CS 3650 Spring 2024 February 9, 2024

Question 2 x86-64 assembly and stack frame

We have talked about registers and assembly in class. Below are some details. You need to
understand them to answer questions.

A. Registers (64-bits):

%rip: contain the address of the next instruction to run
%rsp: point to the top of the stack
%rax: a general-purposed register, also used for holding return value
%rdi: a general-purposed register, also used for holding the first argument

B. Basic x86-64 assembly instructions:

(1) movq PLACE1, PLACE2

means “move 64-bit quantity from PLACE1 to PLACE2”. the places are usually regis-
ters or memory addresses, and can also be immediates (constants).

(2) pushq %rax

Push the content of %rax (which is 8B) to the stack. This is equivalent to two instruc-
tions:

subq $8, %rsp // subtract %rsp by 8
movq %rax, (%rsp) // move the content of %rax to

// the memory pointed by %rsp

(3) popq %rax

Pop the 8B content on top of the stack and copy it to %rax. This is equivalent to two
instructions:

movq (%rsp), %rax // move memory content pointed by %rsp
// to %rax

addq $8, %rsp // %rsp = %rsp + 8

(4) call foo

Invoke function foo (“foo” is a function pointer) [what is a function pointer? Functions
are part of the code, which locates in memory. A function pointer is a pointer to the first
instruction of the function in memory.] This is equivalent to two instructions:

pushq %rip // push %rip to the stack
movq foo, %rip // jump to the first instruction of foo

3

CS 3650 Spring 2024 February 9, 2024

(5) ret

Return from a function. This is equivalent to:

popq %rip // pop the top of the stack and copy it to the %rip,
// meaning the next instruction to run will be the pointer
// on top of the stack

C. Questions:

(a). Consider an initial state of a stack as follows: (Each slot is 8bytes, indicated by “[8B]”)

high
| ... [8B] | <- %rsp
| [=?] |
| [=??] |
| |

low

What will the stack look like after running these four instructions:

movq $36, %rax
pushq %rax
movq $99, %rax
pushq %rax

Draw the stack state like above with %rsp and contents in each slot
(what are in “[=?]” and “[=??]”).

4

CS 3650 Spring 2024 February 9, 2024

Continue with the above stack, and we run the following instructions: (A–G are addresses of
instructions. You will need them when “pushq %rip”)

A: movq $50, %rdi
B: call foo
C: movq %rax, (%rsp)

...

foo:
D: subq $8, %rsp
E: movq %rdi, (%rsp)
F: popq %rax
G: ret

(b). What is the stack state after finishing instruction “E” and before running “F”? Draw
the stack state below.

(c). What’s the stack state when finishing instruction “C”? Draw the stack state below.
(note: you should include %rsp and everything on stack.)

5

	Question 1: Stack frame and stack pointer
	Question 2 x86-64 assembly and stack frame

