
Page 1 of 2

handout_w04a 1/29/24, 11:47 AM

 1 CS3650 24spring
 2 Handout week.04a
 3
 4 The handout is meant to:
 5
 6 −−illustrate how the shell itself uses syscalls
 7
 8 −−communicate the power of the fork()/exec() separation
 9
 10 −−give an example of how small, modular pieces (file descriptors,
 11 fork(), exec()) can be combined to achieve complex behavior
 12 far beyond what any single application designer could or would have
 13 specified at design time.
 14
 15 1. Pseudocode for a very simple shell
 16
 17 while (1) {
 18 write(1, "$ ", 2);
 19 readcommand(command, args); // parse input
 20 if ((pid = fork()) == 0) { // child?
 21 execve(command, args, 0);
 22 } else if (pid > 0) { // parent?
 23 wait(0); //wait for child
 24 } else {
 25 perror("failed to fork");
 26 }}
 27
 28 2. Now add two features to this simple shell: output redirection
 29
 30 By output redirection, we mean, for example:
 31 $ ls > list.txt
 32
 33 while (1) {
 34 write(1, "$ ", 2);
 35 readcommand(command, args); // parse input
 36 if ((pid = fork()) == 0) { // child?
 37 if (output_redirected) {
 38 close(1);
 39 open(redirect_file, O_CREAT | O_TRUNC | O_WRONLY, 0666);
 40 }
 41 // when command runs, fd 1 will refer to the redirected file
 42 execve(command, args, 0);
 43 } else if (pid > 0) { // parent?
 44 wait(0); //wait for child
 45 } else {
 46 perror("failed to fork");
 47 }
 48 }
 49

Cheng Tan, CS3650

Page 2 of 2

handout_w04a 1/29/24, 11:47 AM

 50 3. Another syscall example: pipe()
 51
 52 The pipe() syscall is used by the shell to implement pipelines, such as
 53 $ ls | sort | head −4
 54 We will see this in a moment; for now, here is an example use of
 55 pipes.
 56
 57 // C fragment with simple use of pipes
 58
 59 int fdarray[2];
 60 char buf[512];
 61 int n;
 62
 63 pipe(fdarray);
 64 write(fdarray[1], "hello", 5);
 65 n = read(fdarray[0], buf, sizeof(buf));
 66 // buf[] now contains ’h’, ’e’, ’l’, ’l’, ’o’
 67
 68 4. File descriptors are inherited across fork
 69
 70 // C fragment showing how two processes can communicate over a pipe
 71
 72 int fdarray[2];
 73 char buf[512];
 74 int n, pid;
 75
 76 pipe(fdarray);
 77 pid = fork();
 78 if(pid > 0){
 79 write(fdarray[1], "hello", 5);
 80 } else {
 81 n = read(fdarray[0], buf, sizeof(buf));
 82 }
 83
 84 5. Commentary
 85
 86 Why is this interesting? Because pipelines and output redirection
 87 are accomplished by manipulating the child’s environment, not by
 88 asking a program author to implement a complex set of behaviors.
 89 That is, the *identical code* for "ls" can result in printing to the
 90 screen ("ls −l"), writing to a file ("ls −l > output.txt"), or
 91 getting ls’s output formatted by a sorting program ("ls −l | sort").
 92
 93 This concept is powerful indeed. Consider what would be needed if it
 94 weren’t for redirection: the author of ls would have had to
 95 anticipate every possible output mode and would have had to build in
 96 an interface by which the user could specify exactly how the output
 97 is treated.
 98
 99 What makes it work is that the author of ls expressed their
100 code in terms of a file descriptor:
101 write(1, "some output", byte_count);
102 This author does not, and cannot, know what the file descriptor will
103 represent at runtime. Meanwhile, the shell has the opportunity, *in
104 between fork() and exec()*, to arrange to have that file descriptor
105 represent a pipe, a file to write to, the console, etc.

Cheng Tan, CS3650

