
Page 1 of 3

handout_w06b 2/14/24, 11:12 AM
 1 Week 6.b
 2
 3 1. Producer/consumer example:
 4
 5 /*
 6 "buffer" stores BUFFER_SIZE items
 7 "count" is number of used slots. a variable that lives in memory
 8 "in" is next empty buffer slot to fill (if any)
 9 "out" is oldest filled slot to consume (if any)
 10 */
 11
 12 void producer (void *ignored) {
 13
 14 for (;;) {
 15 /* next line produces an item and puts it in nextProduced */
 16 nextProduced = means_of_production();
 17 while (count == BUFFER_SIZE)
 18 ; // do nothing
 19 buffer [in] = nextProduced;
 20 in = (in + 1) % BUFFER_SIZE;
 21 count++;
 22 }
 23 }
 24
 25 void consumer (void *ignored) {
 26 for (;;) {
 27 while (count == 0)
 28 ; // do nothing
 29 nextConsumed = buffer[out];
 30 out = (out + 1) % BUFFER_SIZE;
 31 count−−;
 32 /* next line abstractly consumes the item */
 33 consume_item(nextConsumed);
 34 }
 35 }
 36
 37 /*
 38 what count++ probably compiles to:
 39 reg1 <−− count # load
 40 reg1 <−− reg1 + 1 # increment register
 41 count <−− reg1 # store
 42
 43 what count−− could compile to:
 44 reg2 <−− count # load
 45 reg2 <−− reg2 − 1 # decrement register
 46 count <−− reg2 # store
 47 */
 48
 49 What happens if we get the following interleaving?
 50
 51 reg1 <−− count
 52 reg1 <−− reg1 + 1
 53 reg2 <−− count
 54 reg2 <−− reg2 − 1
 55 count <−− reg1
 56 count <−− reg2
 57

Cheng Tan, CS3650

Page 2 of 3

handout_w06b 2/14/24, 11:12 AM

 58 2. Producer/consumer revisited [also known as bounded buffer]
 59
 60 2a. Producer/consumer [bounded buffer] with mutexes
 61
 62 Mutex mutex;
 63
 64 void producer (void *ignored) {
 65 for (;;) {
 66 /* next line produces an item and puts it in nextProduced */
 67 nextProduced = means_of_production();
 68
 69 acquire(&mutex);
 70 while (count == BUFFER_SIZE) {
 71 release(&mutex);
 72 yield(); /* or schedule() */
 73 acquire(&mutex);
 74 }
 75
 76 buffer [in] = nextProduced;
 77 in = (in + 1) % BUFFER_SIZE;
 78 count++;
 79 release(&mutex);
 80 }
 81 }
 82
 83 void consumer (void *ignored) {
 84 for (;;) {
 85
 86 acquire(&mutex);
 87 while (count == 0) {
 88 release(&mutex);
 89 yield(); /* or schedule() */
 90 acquire(&mutex);
 91 }
 92
 93 nextConsumed = buffer[out];
 94 out = (out + 1) % BUFFER_SIZE;
 95 count−−;
 96 release(&mutex);
 97
 98 /* next line abstractly consumes the item */
 99 consume_item(nextConsumed);
100 }
101 }
102

Cheng Tan, CS3650

Page 3 of 3

handout_w06b 2/14/24, 11:12 AM

103 2b. Producer/consumer [bounded buffer] with mutexes and condition variables
104
105 Mutex mutex;
106 Cond nonempty;
107 Cond nonfull;
108
109 void producer (void *ignored) {
110 for (;;) {
111 /* next line produces an item and puts it in nextProduced */
112 nextProduced = means_of_production();
113
114 acquire(&mutex);
115 while (count == BUFFER_SIZE)
116 cond_wait(&nonfull, &mutex);
117
118 buffer [in] = nextProduced;
119 in = (in + 1) % BUFFER_SIZE;
120 count++;
121 cond_signal(&nonempty, &mutex);
122 release(&mutex);
123 }
124 }
125
126 void consumer (void *ignored) {
127 for (;;) {
128
129 acquire(&mutex);
130 while (count == 0)
131 cond_wait(&nonempty, &mutex);
132
133 nextConsumed = buffer[out];
134 out = (out + 1) % BUFFER_SIZE;
135 count−−;
136 cond_signal(&nonfull, &mutex);
137 release(&mutex);
138
139 /* next line abstractly consumes the item */
140 consume_item(nextConsumed);
141 }
142 }
143
144
145 Question: why does cond_wait need to both release the mutex and
146 sleep? Why not:
147
148 while (count == BUFFER_SIZE) {
149 release(&mutex);
150 cond_wait(&nonfull);
151 acquire(&mutex);
152 }
153
154

Cheng Tan, CS3650

