handout w06b

Week 6.b
1. Produ

/%

*/

void

}

void

/%

*/

What

Cheng Tan, CS3650

cer/consumer example:

"buffer" stores BUFFER_SIZE items

"count" is number of used slots. a variable that lives in memory
"in" is next empty buffer slot to fill (if any)

"out" is oldest filled slot to consume (if any)

producer (void xignored) {

for (;;) {
/* next line produces an item and puts it in nextProduced */
nextProduced = means_of_production();
while (count == BUFFER_SIZE)
; // do nothing

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

consumer (void *xignored) {

for (;;) A{
while (count == 0)

; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count——;
/* next line abstractly consumes the item x/
consume_item(nextConsumed) ;

what count++ probably compiles to:
regl <—— count # load
regl <—— regl + 1 # increment register
count <—— regl # store

what count-- could compile to:
reg2 <—— count # load
reg2 <—— reg2 - 1 # decrement register
count <-- reg2 # store

happens if we get the following interleaving?
regl <—- count

regl <—— regl + 1

reg2 <—— count

reg2 <-- reg2 - 1

count <-- regl
count <—— reg2

2/14/24. 11:12AM

Page 1 of 3

handout w06b

Cheng Tan, CS3650

58 2. Producer/consumer revisited [also known as bounded buffer]

59

60 2a.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Producer/consumer [bounded buffer] with mutexes
Mutex mutex;

void producer (void xignored) {
for (;;5) {
/* next line produces an item and puts it in nextProduced */
nextProduced = means_of_production();

acquire(&mutex);

while (count == BUFFER_SIZE) {
release(&mutex) ;
yield(); /* or schedule() %/
acquire(&mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
release(&mutex);

}

}

void consumer (void xignored) {
for (;;5) {

acquire(&mutex);

while (count == 0) {
release(&mutex);
yield(); /x or schedule() */
acquire(&mutex) ;

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count—;

release(&mutex);

/* next line abstractly consumes the item x/
consume_item(nextConsumed);

2/14/24. 11:12AM

Page 2 of 3




handout w06b

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

2/14/24. 11:12AM

Cheng Tan, CS3650

2b. Producer/consumer [bounded buffer] with mutexes and condition variables

Mutex mutex;
Cond nonempty;
Cond nonfull;

void producer (void xignored) {
for (;;) {

b

}

/* next line produces an item and puts it in nextProduced */
nextProduced = means_of_production();

acquire(&mutex);
while (count == BUFFER_SIZE)
cond_wait(&nonfull, &mutex);

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;
count++;

cond_signal(&nonempty, &mutex);
release(&mutex);

void consumer (void xignored) {
for (;;3) {

acquire(&mutex);
while (count == 0)
cond_wait(&nonempty, &mutex);

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count——;

cond_signal(&nonfull, &mutex);
release(&mutex) ;

/* next line abstractly consumes the item x/
consume_item(nextConsumed);

Question: why does cond_wait need to both release the mutex and
sleep? Why not:

while (count == BUFFER_SIZE) {
release(&mutex);
cond_wait(&nonfull);
acquire(&mutex);

Page 3 of 3




