Week 4.a

CS3650

01/29 2024
https://naizhengtan.github.io/24spring/

. process birth (cont'd)
. Shell crash course
. Shell internals, part I

. File descriptors
. Shell internals, part II

@: X—:?; ¥25< 3
\/,_,___,_J
Q. exf (0] feturn O 1 weadn
L 1
“)\5?’ 5 (as+ Cvad
S 0 : b(éﬂg . non-0 a problec,

Paremst

. gov\’-” &

LQ\(@OL%/ Proces ¢

I & WNRFRO

X = 1wt

ev [£0) .
{l \\\\gkhf u%d nm%? (N%ﬁ ﬁﬂk7
waid o) i
: exi£(0); paad u
'f it ka&q(lg
v :§6Vl<
:{Mk(} ,

P Lovlec) ; Fevle fork
<F: {ovkﬂi 2 \\\%yk flk g lc
S N DR

Crash course,

1.

2.
—"$ 1s"

3.

Shell

7/

(

|

5 kel
run cmd
"S 1s" and "S$S 1ls (-a! %Ng
L

. ——)

\\\\\\
W‘

!

i{/

output redirection
prints to screen
"$ 1s > files.txt"

backgrounding
"S web-server &

$ n

7

pipe
ll$

cat students.txt shuf -n 1"
-- equivalent

"$ cat students.txt > /tmp/tmpfile
$ shuf -n 1</tmp/tmpfile
$ rm /tmp/tmpfile”

Shell builtin cmds vs.
"echo/pwd/which" vs.
to tell
"S which 1s"

"/bin/1ls"
"S which which"
"which:

—— use "which"
program:

=>

built-in:

=>

Q%HUMWM¢

(‘{a’k‘) o)

&P\ol v kO
0

[C ol {(fr\(2

)==
Y/ZA (Z/cuucref)

WV PA
o
cnp P

o mer§e

///;7 L?LQE—
program =
"lS"

shell built-in command"

ZZQLLué/k>

vl C i (of

L\//Lcr(QL\) §

{ (Rx /£ 1)

Cogge—H> f
2—€“ﬂs on Wsdpres bv‘/%aco5~

& Cot [bLtst fhrsnt — nowfily 4ot

handout w04a Cheng Tan, CS3650

1 (S3650 24spring

2 Handout week.®@4a

3

4 The handout is meant to:

5

6 —-illustrate how the shell itself uses syscalls

7

8 ——communicate the power of the fork()/exec() separation

9 ~ —_

10 -—give an example of how small, modular pieces (file descriptors,
11 fork(), exec()) can be combined to achieve complex behavior

12 far beyond what any single application designer could or would have
13 specified at design time.

15 v s cod sletl

1. Pseudocod dfor a very simple shell

20 if ((pid = fork()) ==0) { // child? v i
21 execve(command args, 0); wht
22 } else if (> 0) { // parent? ¢
23 wai‘c(%g}’Q WL //wait for child :
24 } else H
25 perror("failed to fork"); 4
26 i3 ¢

27 ¢

28 2. Now add two features to this simple shell: output redirection

30 By output redirection, we mean, for example:
31 $ 1s > list.txt

3 wmite (1) < N wride 2 biffes of “&_, o]Cof 1

34 write(1, "$ ", 2);

£,
35 readcommand(command, args); // parse input ¢/ " (S > (rsf 44t
36 ‘ if ((pid = fork()) == 0) { // child?
37 if (output_redirected) {
38 close(1);
39 pen(redlrect flle, 0_CREAT | O_TRUNC | O_WRONLY, 0666);
40 (A } ¢ Lt Avt”
41 = // when command runs, fd 1 will refer to the redirected file
42 execve(commdnd, args, 0);
43 } else if (pid > @) { // parent?
44 wait(0); //wait for child
45 } else {
46 perror(*failed to fork");
47 }
48 i
49 (é;

1/29/24. 11:47 AM

17 while (1)! { [print
18 write tg o » /e $ 753”"(
19 readcomman command args) // parse 1npuf$ (5 q <> —‘\\\\\

Rxec((s 4

(S progw

Cent(L
Cuif ¢ {?

Page 1 of 2

50
51
52
53
54
55
56

handout w04a

Cheng Tan, CS3650

3. Another syscall example: pipe()

The pipe() syscall is used by the shell to implement pipelines, such as
$ 1s | sort | head -4

We will see this in a moment; for now, here is an example use of

pipes.

// C fragment with simple use of pipes

int fdarray([2];
char buf[512];
int n;

pipe(fdarray);

write(fdarray[1], "hello", 5);

n = read(fdarray[@], buf, 51zeof(buf)),

// bufl]l now contains ’h’, 'e’, 'l’, 'l’, 'o’

4. File descriptors are inherited across fork

// C fragment showing how two processes can communicate over a pipe

int fdarrayl[2];
char buf[512];
int n, pid;

pipe(fdarray);
pid = fork();
if(pid > 0){
write(fdarray[1], "hello", 5);
} else {
n = read(fdarray[@], buf, sizeof(buf));
+

5. Commentary

Why is this interesting? Because pipelines and output redirection

are accomplished by manipulating the child’s environment, not by
asking a program author to implement a complex set of behaviors.
That is, the xidentical codex for "1s" can result in printing to the
screen ("ls -1"), writing to a file ("1s -1 > output.txt"), or
getting ls’s output formatted by a sorting program ("ls -1 | sort").

This concept is powerful indeed. Consider what would be needed if it

weren’t for redirection: the author of 1s would have had to

anticipate every possible output mode and would have had to build in
an interface by which the user could specify exactly how the output
is treated.

What makes it work is that the author of ls expressed their

code in terms of a file descriptor:

write(1, "some output", byte_count);

This author does not, and cannot, know what the file descriptor will
represent at runtime. Meanwhile, the shell has the opportunity, *in

between fork() and exec()%, to arrange to have that file descriptor

represent a pipe, a file to write to, the console, etc.

1/29/24. 11:47 AM

Page 2 of 2

a _(((Q o@s‘cr,‘P\lng_

int {0(5 open C Jbin/(s”

D: Shol tnpwt
1. ghl ot
) . otk error

),

Proess L

. E’L\oﬂ oLl {7‘&;
© priat Fhss

Terwinal

