Week 4.b
CS3650
01/31 2024

https://naizhengtan.github.io/24spring/

1. pipelines
2. what makes a good abstraction?
G’ process memory layout

. Crash course in x86-64 assembly
5. Stack frames

et phef 14 7
Q: fork() ret val? £<i><TCL‘(5K

A in . ‘
0: £d 0/1/22 9;‘7920(0% ‘ C&LJ(/

L
Q: "ls > log.txt"? 2 ¢ sid exr ?ﬂ‘ P

7P—u — e
gt o L5 —> {4 L W@ Q

J7éi? \ewmfwﬁ/

MNQ Y tobl
\n#£y 2

e
=

d:ﬁv(wj v "(6 7
ol (4] ol =3 F“Wr

e
Z:CXZWD%éj {Z[;/é

L7NO sidiepure

- pipe et 1
) - L
& (o Studomts At L J

Cod aryunesy

e

mam| fwhanc)
Chay ovgye T

4]
“'A fork() in the road (HotOS'19)

“Fork today is a convenient API for a single-threaded process with a
small memory footprint and simple memory layout that requires

fine-grained control over the execution environment of its children but
does not need to be strongly isolated from them. In other words, a shell."

Pa\/m% Omfj

o worldl | hello agasin

Process
= ghell — .

(& frows

‘”&’{%NE\K/L I R \

handout w04a

CoONOOUAEWNE

Cheng Tan, CS3650 1/29/24. 11:47 AM

CS3650 24spring
Handout week.@4a

The handout is meant to:
—illustrate how the shell itself uses syscalls
——communicate the power of the fork()/exec() separation

-—give an example of how small, modular pieces (file descriptors,
fork(), exec()) can be combined to achieve complex behavior

far beyond what any single application designer could or would have
specified at design time.

1. Pseudocode for a very simple shell

while (1) {
write(1, "$ ", 2);
readcommand(command, args); // parse input
if ((pid = fork()) == 0) { // child?
execve(command, args, 0);

} else if (pid > 0) { // parent?
wait(0); //wait for child
} else {

perror("failed to fork");

2. Now add two features to this simple shell: output redirection

By output redirection, we mean, for example:
$ 1s > list.txt

while (1) {
write(1, "$ ", 2);
readcommand(command, args);
if ((pid = fork()) == 0) {
if (output_redirected) {
close(1);
open(redirect_file, O_CREAT | O_TRUNC | O_WRONLY, 0666);

// parse input
// child?

// when command runs, fd 1 will refer to the redirected file
execve(command, args, 0);

} else if (pid > @) { // parent?
wait(0); //wait for child
} else {

perror(*failed to fork");

Page 1 of 2

handout w04a

50
51
52
53
54
55
56

Cheng Tan, CS3650
3. Another syscall example: EE‘?-Q

The pipe() syscall is used by the shell to implement pipelines, such as
$ 1s | sort | head -4

We will see this in a moment; for now, here is an example use of

pipes.

// C fragment withlsémplﬁwpse of pipes
int fdarrayl[2];

char buf[512];
int n;

& w

1/29/24. 11:47 AM

pipe(fdarray);

write(fdarray[1], "hello", 5);

n = read(fdarray[@], buf, sizeof(buf));
// bufl]l now contains ’h’, 'e’, 'l’, 'l’, 'o’

4. File descriptors are inherited across fork
// C fragment showing how two processes can communicate over

int fdarrayl[2];
char buf[512];
int n, pid;

w22
cloge (edamayrs]),
pipe(fdarray);
pid = fork();

cCaSQ({quVﬂjz.])
if(pid > 0){ &~ .5

write(fdarray[1], "hello", 5); — |
} else {
n = read(fdarray[0], buf, sizeof(buf)

-
S
Why is this interesting? Because pipelines and output redirectio
are accomplished by manipulating the child’s environment, not by
asking a program author to implement a complex set of behaviors.
That is, the xidentical codex for "1s" can result in printing to the

screen ("ls -1"), writing to a file ("1s -1 > output.txt"), or
getting ls’s output formatted by a sorting program ("ls -1 | sort").

5. Commentary

This concept is powerful indeed. Consider what would be needed if it
weren’t for redirection: the author of 1s would have had to
anticipate every possible output mode and would have had to build in
an interface by which the user could specify exactly how the output
is treated.

What makes it work is that the author of ls expressed their

code in terms of a file descriptor:

write(1, "some output", byte_count);

This author does not, and cannot, know what the file descriptor will
represent at runtime. Meanwhile, the shell has the opportunity, *in

between fork() and exec()%, to arrange to have that file descriptor

represent a pipe, a file to write to, the console, etc.

Page 2 of 2

N /%

B lkes

5 babs
Crash course of |x86+{64)assembly

OK’CWKi D?wuéX5 reqister
£ [nreg
* Tqu HEéCEl, PLACE%) ; Liade
Bt
* pushg %rax [subq |$8), %rsp

0
(2

-

* popq %rax [movg (%rsp), %rax

addg $8, %rsp

* call 0x12345 [pushg %rip

movg $0x12345,

* ret [popg %rip |

Reqi™
o (O/ﬁr g f

O srade
L_ ﬁ%dii
pugh X g

Pof J=x

movq %rax, (%rsp) |

]

z% CPU
j;zéa Tntel , AMD
. ARNL: Rpple

* RISCV -

Stack

l%g ArﬁD

&~

$rip]

