Training Tiny Language Models: An Underexplored
Regime Where Conventional Wisdom is Incomplete

Arya Wu, Xilin Wang, Gavin Yang

1. Introduction

Researchers have produced many training heuristics for large language models. The Chinchilla
scaling laws established compute-optimal token-to-parameter ratios [1]. Learning rate scaling
rules prescribed how to adjust hyperparameters with batch size [2]. The maximal update
parameterization (muP) promised zero-shot hyperparameter transfer across model scales [3].
These results, derived from models ranging from hundreds of millions to hundreds of billions of
parameters, now constitute the field's conventional wisdom.

We argue that this wisdom does not transfer to small-scale LLMs. Models below 100M
parameters constitute a distinct training regime. This regime has largely been ignored. In this
regime, established heuristics may not work as expected. Recent work inspired us to argue this
claim: Godey et al. [4] demonstrate that small models suffer from a "softmax bottleneck" causing
late-training performance degradation absent in larger models; Diehl Martinez et al. [5] show
that small models exhibit slow and unstable convergence throughout training; and both
MiniCPM [6] and SmolLM2 [7] report that standard hyperparameter choices require substantial
modification at small scales. Although models in the works mentioned above may not strictly be
below 100M, these findings motivate us to find evidence directly related to our claim.

Our experiments training 30M-75M parameter models reinforce the common theme of these
findings. Learning rate extrapolations, batch-size scaling rules, and Chinchilla-optimal training
durations that work reliably at 130M+ parameters failed non-monotonically at smaller scales.
Small language models are increasingly important for edge deployment, as testbeds for
architectural innovation, and for community-driven efficiency research. If our scaling laws cannot
be trusted below 100M parameters, the field needs new empirical understanding of this regime.

2. Batch Size for Small-Scale Training

Batch size has long been recognized as a critical lever in model training. Larger batches enable
faster wall-clock training through parallelism, and a body of research has established practices
for exploiting this without sacrificing model quality [8].

Two heuristics have been widely adopted: critical batch size—the threshold beyond which larger
batches yield diminishing returns, namely the point that minimizes the number of training tokens
required for a target loss [9]; and the square root learning rate scaling rule—when increasing

batch size by a factor of k, multiply the learning rate by Vk. The latter, originally derived from
random matrix theory for adaptive optimizers like Adam [10], has been validated on models from
BERT to GPT [11]. Similar trends appear in the Marin Speedrun project, where experiments on
130M+ parameter models confirm the rule's effectiveness [12].

But do these heuristics transfer to smaller scales? We investigated this question by training
50-million-parameter models under a 2x Chinchilla-optimal regime across batch sizes from 16 to
256. Our findings reveal that the intuitions developed at large scale can be misleading when
applied to tiny models.

The following figure plots C4-BN BPB loss against batch sizes under three settings.

Effect of Batch Size, LR Scaling, and Warmup on Evaluation Loss

=& LR Scaled (no warmup)
—— LR Scaled + Warmup (0.05)

1431 Fixed LR=0.02 + Warmup (0.05)

1.42 4

=
IS
s

Evaluation Loss
-
»
o

=
W
©

1.38 4

1374 \

1 20

16 32 64 128 256
Batch Size

2.1 Critical batch size is larger than expected for tiny models

Across all experimental configurations, the lowest evaluation loss occurred at batch size 256.
This contradicts the prevailing intuition that critical batch size should increase with model scale.
Prior experiments for Muon show 130M models degrading when batch size increases from 128
to 256, while 1.2B models tolerate both equally well under 1x Chinchilla settings. By this logic,
50M models should plateau or degrade at even smaller batch sizes — however, our result
reveals its critical batch size to be potentially larger than 256 (due to computational constraints
we did not test batch sizes beyond).

The standard explanation for critical batch size is that larger batches stabilize gradient estimates
toward the true gradient, reducing the steps needed to reach a target loss—but only up to a

point, beyond which further increases provide no additional benefit as gradient estimates are
stable enough [8]. Our results suggest that for 50M models, gradient estimates remain noisy
even at batch size 128, contrary to the assumption that smaller models should exhibit less
gradient variance. This finding cautions against blindly applying insights from large-scale
training to small-scale regimes without empirical validation.

2.2 Square root scaling for learning rate provides marginal benefit at best

We compared a scaled learning rate configuration (yellow line, applying Vk scaling from a base
batch size of 128) against a fixed learning rate across all batch sizes (purple line). The
difference was negligible with an average gap of 0.03%: at batch size 128, the scaled
configuration achieved 1.3639 BPB versus 1.3641 for the fixed rate. Interestingly, the
discrepancy between two settings diminishes as batch size increases.

Prior work on 130M+ models claims that square root scaling preserves training dynamics across
batch sizes. Yet their empirical evidence is less direct than the theoretical foundation suggests:
studies on GPT models and Marin-style models plotted learning rate x batch size against
evaluation loss, with no direct demonstration of the benefits from setting LR / sqrt(BatchSize) to
be constant [12]. Our controlled comparison—holding all else constant while toggling the scaling
rule—provides direct evidence that this widely-believed heuristic may not be as essential as
claimed. We do not argue that learning rate scaling is useless at small scales, only that its
necessity warrants scrutiny. Hyperparameter interactions at small scales may simply differ from
those at large scales, potentially obviating the need for scaling entirely.

2.3 Linear warmup scaling consistently improves training

Standard Muon configurations on the Marin leaderboard omit warmup steps, and prior
investigations have briefly brought up the potential effect of warmups without empirical guidance
[12]. We found that adding a warmup ratio of 0.05 (linearly scaling with training steps) yielded
lower evaluation losses across all batch sizes from 16 to 256. The improvement margin
persisted as batch size increased.

Our training curves reveal a consistent pattern: the warmup configuration initially lags behind its
counterpart but gradually overtakes it, ultimately achieving lower final loss. This suggests that
warmup enables more stable optimization trajectories less susceptible to early plateaus. We did
not systematically search for optimal warmup ratios or schedules; nonetheless, this experiment
underscores the transferability problem, in which a practice deemed unnecessary at 130M+
parameters may prove beneficial at 50M.

3. How Long Should You Train Your Tiny Language Model?

Training a language model costs millions of dollars, making one question critically important:
given a fixed compute budget, how should we balance model size and training duration to
maximize quality? Since total training cost is approximately proportional to the number of
parameters multiplied by the number of training tokens, every training run involves deciding

whether to spend compute on more parameters or more data. The influential Chinchilla [1]
paper provided an answer. After training hundreds of models across a wide range of sizes and
token budgets, Hoffmann et al. [1] reported an optimal token-to-parameter ratio of roughly 20
tokens per parameter. This "20x rule" became the dominant heuristic, shaping both academic
benchmarks and early industrial LLM development.

However, industry practice has shifted toward overtraining models far beyond Chinchilla-optimal
ratios. Epoch Al [13] reports that the ratio of training data to parameters in open-weight LLMs
has grown 3.1x per year since 2022, with recent models trained on 20x more tokens per
parameter than Chinchilla's optimal ratio. The Llama family demonstrates this escalation:
Llama-1 65B adhered to the prescribed 20x ratio, but Llama-2 70B pushed to 30x and Llama-3
70B exploded to 200x (15 ftrillion tokens). This trend is driven in part by the demand for
powerful, smaller models in the 1B-70B parameter range that are easier and cheaper to finetune
and deploy.

This raises a natural question: should we overtrain tiny models (<100M params) beyond
Chinchilla-optimal, following industry trends with larger models?

To investigate, we train 30M, 50M, and 75M parameter models at 0.25x, 0.5x, 1x
Chinchilla-optimal (20 tokens/parameter), 2x (40 tokens/parameter), and 4x (80
tokens/parameter) using the Muon optimizer. We plot evaluation C4-BN bits-per-byte (BPB) loss
against model FLOPs, defined as the total number of FLOPs required to train the model.

Evaluation Loss Across Model Sizes and Chinchilla Multiples

iy

1.25 1 Model Size 2x
® 30M 1x
 EY
~1.30 1 75M .2
[
2 0.25x
8. 135 N 2X 4x
m
& 1.40 - 0.2 ax
c 2X
S
o 0.25x 1x
% 1.45 1
E ' 0.5
1.50 A
0725x
"1(')17 ' - 1(')18

Model FLOPs

3.1 Extended training continues improving tiny models with no saturation observed.

Across all model sizes (30M, 50M, 75M), we observe consistent quality improvements as we
increase training duration from 1x to 2x to 4x Chinchilla-optimal. Crucially, we find no evidence
of a saturation point: loss curves show no signs of plateauing, suggesting that further extended
training would continue yielding quality gains.

While compute constraints prevented us from exploring higher multiples, the absence of
saturation hints that extreme overtraining—as demonstrated by Sardana et al. (2024) [14] who
trained small models up to 500x Chinchilla to match larger models—might also benefit tiny
models.Whether tiny models (<100M parameters) exhibit similar gains at extreme training
durations remains an open question for future work.

This finding validates the core motivation behind industry's overtraining strategy: longer training
does produce better small models, making the extra training cost potentially worthwhile for
deployment scenarios where smaller model size reduces inference costs.

3.2 Chinchilla-Optimal is NOT compute-efficient for tiny models: at this scale, model
capacity dominates.

While extended training improves absolute quality (Finding 1), it does not provide a
compute-efficient path to better models. At fixed FLOP budgets, larger models at lower D/N
ratios consistently dominate smaller models at higher D/N ratios, across a wide range of training
durations. The performance gaps between model sizes far exceed the marginal gains from
extended training within a single model size.

But is Chinchilla-optimal (D/N=20) itself the right target at tiny scale? To investigate this, we test
sub-Chinchilla training regimes at 0.5% and 0.25% (D/N = 10 and 5). Recent work challenges
Chinchilla's universality—Farseer [15] introduces refined scaling laws demonstrating that
Chinchilla's rule of thumb applies only at moderate compute budgets (C = 10*-10?' FLOPs) and
breaks down at both extremes. Our experiments confirm this: At roughly 2x10" FLOPSs,
Chinchilla’s framework would recommend a 50M model at 1x (D/N = 20, BPB 1.40). Yet a 75M
model trained at just 0.25x (D/N = 5, BPB 1.35) achieves better performance with less compute.
This pattern persists across budgets. For any fixed FLOP limit, allocating compute to a larger
model with minimal training reliably outperforms allocating it to a smaller model at D/N = 20.

Extrapolating our performance curves suggests an optimal D/N below 5. However, such low
ratios yield poor absolute performance (BPB > 1.5), rendering them impractical. In practice, this
means the tiny-scale regime offers no meaningful compute—performance tradeoff: to achieve
good results, one should simply train the /argest model that fits the FLOP budget, regardless of
D/N.

3.3 Extreme hyperparameter instability blocks systematic exploration.

Despite the promise of extended training, we observed severe and unpredictable
hyperparameter sensitivity that makes systematic exploration impractical. Learning rates
extrapolated from reported optimal 130M-scale Muon configurations—adjusted for model size

and training duration—often failed catastrophically, even for seemingly minor differences in
configuration.

We observed two forms of non-monotonic instability. Across model sizes, 4x Chinchilla rates
worked for 30M and 75M but diverged for 50M, which only stabilized after reducing Muon LR
from 0.016 to 0.006. Within a single model size (75M), the same extrapolated rates worked at
1% and 4x Chinchilla but failed at 2%, converging only after reducing Muon LR from 0.018 —
0.012 and Adam LR from 0.0028 — 0.0020.

This non-monotonic behavior—where similar configurations require drastically different
hyperparameters—turns systematic exploration into trial-and-error and prevents reliable transfer
across scales. Future work should develop principled scaling laws for tiny-model
hyperparameters, enabling efficient exploration of extended training regimes.

4. Conclusion

We have argued that small-model training below 100M parameters constitutes a distinct
empirical regime where the field's established training heuristics fail. Our experiments
demonstrated this failure across two dimensions. First, batch-size scaling rules derived from
large-model training do not transfer: the learning rate adjustments that stabilize training at scale
produced inconsistent or degraded results at 30M—75M parameters. Second, Chinchilla-optimal
training durations do not apply at a tiny scale: model capacity dominates, and allocating
compute according to D/N = 20 does not reliably yield the best results. While extended training
continues to improve absolute performance, achieving these gains requires careful and
sometimes non-monotonic hyperparameter tuning, as small changes can cause catastrophic
failures.

These findings have practical implications. Small language models are no longer merely
stepping stones to larger systems. They are deployment targets for edge devices, efficient
testbeds for architectural research, and the substrate for community-driven efficiency research.
The implicit assumption that insights transfer downward from large-scale training has allowed
the sub-100M regime to remain underexplored. Our results suggest this assumption is unsafe,
and that the field would benefit from systematic investigation of small-model training dynamics
as a research problem.

4.1 Limitations

Our experiments were conducted within the Marin Speedrun framework, and this choice
introduces limitations that warrant explicit discussion.

First, our results reflect a specific and potentially idiosyncratic computational environment. We
encountered out-of-memory failures that required modifying JAX environment variables: flags
controlling memory preallocation and garbage collection behavior. These modifications, while
necessary to run experiments, produced measurably different training dynamics—a troubling
interaction that we could not fully characterize. The fact that low-level runtime configuration can

significantly affect model training outcomes, without clear documentation of which settings the
reference runs employed, undermines confidence in cross-submission comparisons. Speedrun
leaderboards implicitly present results as commensurable, but hidden environmental
dependencies call this into question.

Second, the Marin framework's reliance on JAX introduces complexity that hampers debugging
and reproducibility. JAX's compilation model, while offering performance benefits, makes it
difficult to isolate whether unexpected behaviors stem from optimizer dynamics or compilation
artifacts. When our 50M model collapsed at 4x Chinchilla while the 30M and 75M models did
not, distinguishing between a genuine optimizer problem and a framework-specific issue
required substantial effort with limited tooling. PyTorch's eager execution model, while
potentially slower, would have permitted more transparent diagnosis. For a competition aimed at
discovering generalizable training insights, the choice of framework matters: complexity that
obscures failure modes reduces the scientific value of negative results.

Third, and more broadly, speedrun competitions optimize for a metric that may not align with
scientific understanding. Submissions are incentivized to exploit hardware-specific
optimizations, framework quirks, and hyperparameter configurations that win on the leaderboard
but do not generalize. A competition that aims to advance training efficiency would benefit from
stricter controls: standardized environments, comprehensive mandatory configuration
disclosure, and evaluation across multiple hardware targets.

These limitations do not invalidate our findings. The failures we observed are real, and the
patterns we document are unlikely to be pure artifacts. But they do constrain interpretation. Our
claim is not that Muon or the Marin framework are fundamentally flawed, but that small-model
training exposes fragilities in optimizers, in heuristics, and in evaluation infrastructure.
Larger-scale training may simply dismiss these fragilities with excess capacity. The field's path
forward requires both better empirical understanding of small-model dynamics and more
rigorous experimental frameworks in which to develop that understanding.

References

[1] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, et al. 2022. Training
Compute-Optimal Large Language Models. In NeurlPS 2022. arXiv:2203.15556

[2] Priya Goyal, Piotr Dollar, Ross Girshick, et al. 2017. Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour. arXiv:1706.02677

[3] Greg Yang, Edward J. Hu, et al. 2022. Tensor Programs V: Tuning Large Neural Networks
via Zero-Shot Hyperparameter Transfer. In NeurlPS 2022. arXiv:2203.03466

[4] Nathan Godey, Eric de la Clergerie, and Benoit Sagot. 2024. Why Do Small Language
Models Underperform? Studying Language Model Saturation via the Softmax Bottleneck.
arXiv:2404.07647

[5] Rhys Diehl Martinez, Edoardo Maria Ponti, and Christopher D. Manning. 2024. Tending
Towards Stability: Convergence Challenges in Small Language Models. In Findings of EMNLP
2024. arXiv:2410.11451

[6] Shengding Hu, Yuge Tu, Xu Han, et al. 2024. MiniCPM: Unveiling the Potential of Small
Language Models with Scalable Training Strategies. arXiv:2404.06395

[7] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, et al. 2025. SmolLM2: When Smol Goes
Big—Data-Centric Training of a Small Language Model. arXiv:2502.02737

[8] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. 2018. An Empirical
Model of Large-Batch Training. arXiv:1812.06162

[9] Naoki Sato, Hiroki Naganuma, and Hideaki liduka. 2025. Convergence Bound and Ciritical
Batch Size of Muon Optimizer. arXiv:2507.01598

[10] Diego Granziol, Stefan Zohren, and Stephen Roberts. 2022. Learning Rates as a Function
of Batch Size: A Random Matrix Theory Approach to Neural Network Training. Journal of
Machine Learning Research 23(173), 1-65. arXiv:2006.09092

[11] Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. 2022. On the SDEs
and Scaling Rules for Adaptive Gradient Algorithms. In NeurlPS 2022. arXiv:2205.10287

[12] Marin Community. 2024. Marin Speedrun: Batch Size and Learning Rate Scaling.
https://github.com/marin-community/marin/issues/1565

[13] Epoch Al. 2024. Training Tokens per Parameter.
https://epoch.ai/data-insights/training-tokens-per-parameter

[14] Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. 2024. Beyond
Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws. In ICML 2024.
arXiv:2401.00448

[15] Houyi Li, Wenzhen Zheng, Qiufeng Wang, Zhenyu Ding, Haoying Wang, Zili Wang, Shijie
Xuyang, Ning Ding, Shuigeng Zhou, Xiangyu Zhang, and Daxin Jiang. 2025. Predictable Scale:
Part I, Farseer: A Refined Scaling Law in Large Language Models. arXiv:2506.10972

	Training Tiny Language Models: An Underexplored Regime Where Conventional Wisdom is Incomplete
	Arya Wu, Xilin Wang, Gavin Yang
	1. Introduction
	2. Batch Size for Small-Scale Training
	3. How Long Should You Train Your Tiny Language Model?
	4. Conclusion
	References

