Batch-invariance: Our Testing and Observations on
Current Community Efforts

Anyu Yang Junbeom In Xiaocong Zhang
December 8, 2025

1 Intro

In short, batch invariance vaguely means the LLMs’ inferencing gets for the same input
the same results in various batches, which is one building block of overall determinism of
LLMs.

We have replicated and tested the software setup of the initial vLLM batch invariance
pull requestll] (PR). On our machines, we found all the small models we tested are NOT
batch invariant. We haven’t tested the exact same model (Qwen3-8B) claimed in the PR,
so it doesn’t directly veto the legitimacy of the PR.

Nonetheless, with preliminary testing, we show that in this PR the variances are still
prevalent in terms of models and graphics processing units (GPUs). Further, we strongly
suspect the Qwen3-8B to not be batch invariant, at least on our GPUs. Ultimately, we
find the ongoing efforts to reach batch invariance by the community unreliable due to
current methodology (naive and insufficient testing).

2 The Definition of Batch Invariance

The discussion of batch invariance sits under the general topic of determinism. Since
LLMs itself is probabilistic, it’s hard to realize the issue of non-determinism. But if we
put aside randomness in algorithms, the persisting non-determinism might surprise people
sometimes. Then we see the effect of batching and its intrication with the implementation
of GPU kernels.

From reading the blog, it seems that the definition of ”batch invariance” is, not getting
different results due to different positions in a batch or different batch sizes.

In other words, when the batch size changes, each element in the batch can get
different results.” This is how batch variance is introduced in the original blog.

But it raises some questions:

o [f we accept the definition, does batch invariance also imply different batches should
have the same results (given the same input)?

IWe also tested the batch invariance feature in the main brach vLLM. But since our machines don’t
have the required Compute Capability 9.0, the observed variances carry less significance.

e [s batch invariance the only thing once we exclude randomness in algorithm from
non-determinism in LLM? (logical complement)

For the second question: If so, we would try prove or at least, reason about it. If not,
we surely want to find a new source of non-determinism.

3 Tracking Community Activity

The initial blog and the accompanying PR did attract attention. Since then, the com-
munity has been working on it actively. Most notably, the batch invariance has been
adopted in official vLLM release, with dedicated documentationﬂ

Now batch invariance is a projectrﬂ under vLLM, with 19 pull requests in total. Some
new features include expanding batch invariance to multiple GPUs (Tensor Parallism),
supporting DeepGEMM and Blackwell, etc.

The consensus is, this feature helps debugging and the quality of reinforcement learn-
ing.

4 GPUs, Environments and Models

We tested with two machines, Ubuntu 22.04.1 with RTX 3060 6G and WSL2 Ubuntu
20.04.6 with RTX 4060 8G. While the community is using datacenter GPUs E] (H100,
H200, etc.) and larger models, testing smaller models on consumer-grade GPUs is also
meaningful given the nature of this concept. As we are not providing strong guarantees
as in formal verification, it’s necessary to see real results on different machines.

The relevant packages’ versions are:

e cuda 12.8, 12.9

cuda-toolkit 12.9

vllm pr-24583

torch 2.9.0

torchvision 0.24.0

torchaudio 2.9.0

e xformers 0.0.33.post1

See Appendix [A] about why we used torch 2.9.0 and other compatible packages, instead
of what’s required in configuration files.
The relevant models we’re able to cover:

e "TinyLlama/TinyLlama-1.1B-Chat-v1.0”

Zhttps://docs.vllm.ai/en/latest /features /batch_invariance /#future-improvements
3https://github.com/orgs/vllm-project/projects/29 /views/1
4The official vLLM only supports batch invariance feature for Compute Capability (CC) 9.0

e "Qwen/Qwen2.5-1.5B-Instruct”

e "Qwen/Qwen3-0.6B”

e "Qwen/Qwen3-1.7B”

e "Qwen/Qwen3-4B-Instruct-2507-FP8”

5 Experiments and Observations

We are running the provided deterministic_vllm_inference.py, which concurrently
sends 1000 identical requests to a vLLM server.
To discover variances, we tweak and utilize the script as such:

e We set the maximum output tokens to 400 or 500.
e We write prompts to induce longer answers. See Appendix for examples.

e Not surprisingly, we change relevant parameters and run the scripts multiple times.

5.1 Results

The result is, we have found NONE of the models we tested to be batch invari-
ant.

The number of unique samples we tested for Qwen3 modelsﬂ in one single execution
of deterministic_vllm inference.py are recorded in table [I]

Model prompt 2 prompt 3 prompt 4
Qwen/Qwen3-4B-Instruct-2507-FP8 58 6 632
Qwen/Qwen3-1.7B 2 2 7
Qwen/Qwen3-0.6B 17 3 3

Table 1: Number of unique outputs under different prompts.

The way to interpret is, as long as we see one execution with multiple unique samples,
we know the kernels are not batch invariant for this model and GPU.

5.2 Observations

1. First of all, variance is ephemeral if you don’t pay attention, but if you look closely,
it’s not hard to catch either. The results are often the same, but you can easily find
3-5 unique samples even with a tiny model (1.5 B) and a small batch size (180).

2. Larger models, longer output token sequences, larger batch sizes, larger sampling
sizes are more likely to find variance. The aforementioned factors have different
rationales behind them: longer answers induced by good questions lead to more
iterations (before getting EOF token).

5We assume Qwen3-1.7B, Qwen3-0.6B and Qwen3-8B to execute the exact same code path in vLLM.

3. The test script concurrently sends 1000 requests by default, which are reasonably
bursty. However, there is no guarantee that these requests would be processed in
a single batch: The server could have a smaller batch size limit, or continuous
batching might play a role.

4. Based on the code, comment and discussion of the PR, it’s trying to be general,
supporting multiple models and machines. The author claims to pass tests with
Qwen3-8B, not mentioning machine requirements. When people say they test with
Qwen3-30B, no objection raised by author. When people ask about support for
Qwen3 moe, the answer seems to be negative. It’s stated the PR doesn’t support
multi-GPU (tensor parallelism).

6 Discussion

Observation [3] is not an issue in practice, since the implicit expectation is to get only
one unique result across all samples. But it might affect reproducibility given different
configurations (batch size) of vLLM servers. This is also relevant to the definition of
batch invariance.

Referring to observation [2, We think often the claims to support batch invariance are
too unserious. People say, "I tested it with model X; on machine Y}, it passed the test.”
But how confident are we to believe it would work for other models (even just of different
sizes), or another GPU? Equally disturbing, if people haven’t tweaked the script (increase
maxTokens, increase sample size, change prompts, repeat, etc.) to thoroughly test , the
result is unreliable even with the exact same model and GPU.

Following that, we can confirm with observation |4 that at least for the initial PR, the
workflow is author and people claiming to pass tests and get merged, without a viable
means to verify. So it’s likely that later these code will be found not really invariant. It’s
not hard to fix it when problems are discovered, but the issue is, in this situation we are
never really sure if the code is batch invariant.

7 Possible Further Explorations

7.1 GPU Kernel Code Inspection

Now that we have variances found, we can manually review the kernels and reason about
it. It might be vLLM- or PyTorch-related.

7.2 Review Existing Test Cases in vLLM’s Batch Invariance
Project
The testing for batch invariance is too naive in the initial PR, and we suppose the

subsequent ones in the batch invariance project are alike. But a systematic review would
help reach this conclusion.

A Inspecting What’s Wrong with PyTorch 2.8.0

There are some inconsistency and confusion in pr24583: On one hand, all relevant pack-
ages (torch, torchvision, torchaudio, xformer, etc.) are requiring torch 2.8.0 in config files
like pyproject.toml and requirements/cuda.txt, on the other hand, the testing script
deterministic_vllm inference.py specifically ask for torch 2.9.0 in comments.

Initially we dismissed the comment requesting torch 2.9.0 and went with the config
files, since torch 2.9.0 hadn’t been released when they publish pr24583. Then we really
encountered a runtime error with torch 2.8.0, and it seems the error is a direct result of
code change introduced in this pull request. The error is:

ValueError: Q and KV block size must be divisible by BLOCK_M and BLOCK_N.
We got Q_BLOCK_SIZE=16 and KV_BLOCK_SIZE=16.

It is pr24583 that fixed BLOCK_M, BLOCK_N, Q_BLOCK_SIZE and KV_BLOCK_SIZE to 16. But
16 % 16 == 0 should hold! After inspecting torch 2.8.0, we discovered it’s a logical bug
in validation of kernel options:

SPARSE_KV_BLOCK_SIZE % conf.block_n != 0

or SPARSE_Q_BLOCK_SIZE % conf.block_m ! 0

Instead of conf.block.m and conf.block_n, it should have used
cur_kernel_options ["SPARSE_KV_BLOCK_SIZE"] % cur_kernel_options["BLOCK_N"]
1= 0
or cur_kernel_options ["SPARSE_Q_BLOCK_SIZE"] % cur_kernel_options["BLOCK_M"]
1= 0

which gets real configuration if available.

We think the bug passed functionality test because most people are using high end
GPUs and common configurations. But we used a low end gaming GPU and some fixed
configuration in Thinking Machines’ scripts. There are great variability in model meta-
parameters and all kinds of block sizes, so we might expect many similar edge cases
exist. And since these edge cases are not covered, many logical loopholes remain in these
frameworks.

B Experiment Artifacts

B.1 Example Prompts

Here are prompts we used to get long answers.
e prompt 1: "Tell me the rise and fall of Rome in great detail.”

e prompt 2: "You are a careful mathematician. Read the problem, reason step by
step, and then give ONLY the final numeric answer on the last line, prefixed by
‘Answer:’. Avoid any extra commentary. Problem: Let f(z) = 322 — 5z + 7.
Compute the exact value of the sum S = 3-°% f(i), and express your answer as an

integer. /no_think”

e prompt 3: "Solve a multi-step math problem. First derive intermediate quantities
explicitly, then compute the final answer. Avoid filler phrases. Begin directly with

the first computation step. Problem: A train travels 135 km at 72 km/h, then
continues 215 km at 95 km/h. What is its total travel time in minutes? /no_think”

e prompt 4: "Write a complete Python function that parses a nested JSON structure
representing a filesystem, computes total file sizes by directory, and returns the top
5 largest directories. Do not explain. Begin directly with the function definition.
/no_think”:

C Batch Invariants Matmul Kernel

We implemented Triton Kernel for the proof of concept. Our kernel’s reduction order
is independent of the batch dimension. The main idea is to parallelize the reduction
dimension K and to keep the accumulation order fixed regardless of the number of lows
M. Each kernel instance computes a fixed-size output.

C.1 GPU Kernel Code

@triton. jit
def bi_mm_kernel(
A_ptr, B_ptr, C_ptr,
M, N, K,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,

1. Current Kernel Instance inquiry
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)

2. Offsets

m : row

N : column

K : How many chunks will be processed at a time (I mean K).
nnn

offs_m = pid_m * BLOCK_M + tl.arange(O, BLOCK_M)

offs_n = pid_n * BLOCK_N + tl.arange(O, BLOCK_N)

offs_k = tl.arange(0, BLOCK_K)

3. Calculate the A,B location pointer from the K block (MEMORY LOC)
a_ptrs = A_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak
b_ptrs = B_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn

4. FP32 Accum

acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)

5. K axis -> BLOCK_K as unit LOOP

for k in range(0, K, BLOCK_K):
ONLY VALID LOCATION (Last block can go over the K)
k_mask = (k + offs_k) < K

Data Loading from the pointers
a = tl.load(a_ptrs, mask=k_mask[None, :], other=0.0)
b = tl.load(b_ptrs, mask=k_mask[:, None], other=0.0)

Accumulate
nmmnn

MATMUL
axb to (Block_M x Block_N) add to acc

acc += tl.dot(a, b)

POINTER MOVE

A -> Column
B -> Row

a_ptrs += BLOCK_K * stride_ak
b_ptrs += BLOCK_K * stride_bk

6. Calculation SAVE

MEMORY LOCATION

c_ptrs = C_ptr + offs_m[:, Nonel * stride_cm + offs_n[None, :] * stride_cn
Validation, Make sure it’s before M and N

mask_m = offs_m < M

mask_n = offs_n < N

#C=MxN

tl.store(c_ptrs, acc, mask=mask_m[:, None] & mask_n[None, :])

C.2 Perofrmance

We benchmarked implementations using standard CUDA code.
e Average Slowdown : 1.05x
e Small Batch (Less than 16) : 1.013x
e Mid batch (16 to 265) : 1.095x

e Large Batch (Biggern than 265) : 1.051x

The Triton kernel maintains complete determinism, with only a few slowdowns compared
to the standard PyTorch code.

	Intro
	The Definition of Batch Invariance
	Tracking Community Activity
	GPUs, Environments and Models
	Experiments and Observations
	Results
	Observations

	Discussion
	Possible Further Explorations
	GPU Kernel Code Inspection
	Review Existing Test Cases in vLLM's Batch Invariance Project

	Inspecting What's Wrong with PyTorch 2.8.0
	Experiment Artifacts
	Example Prompts

	Batch Invariants Matmul Kernel
	GPU Kernel Code
	Perofrmance

