Week 6
CS4973/CS6640

02/10 2025 'ZS C'_,
https://naizhengtan.github.io/25spring/ EZ s+
E/l. last time: egos £'~6(
m/ . egos exception handling rth /\/\ ?.—’? g
3. syscall in egos Dt hru
. CPU privilege levels ~— O,h . C‘ft'ug
?_E. System virtualization PQK‘ 6%) FQ71$FNS
(abd : D% Profectin U l%@r okt
[4 O’P?S
1. last time: egos VWOM(,(J’L;C/&le w“\q-o..ke,%l
*»/0S organization R g \
des: l
\f 2gos design 444 L s
\J egos boot 'P""
* kernel ~= three handle r‘~ {€S
AL A\

Wé i .Dmss@ JU B [~/ o

\,j_:]
carth (» boot :

E W 7 CPL/ 20400006

eorth .S
Ly pain ('eav-i'ld .C)

ST T R N
Lo ‘QZYVUL o L>475 P“C

_ 595l
. (V\{.e‘{we\— E 3y s okir
. syscall 7 5y5- shell

. CX('CP‘}/O‘/I L?$ V‘%

(a) Interrupt

/7 \}.J]A.a“(' C oo‘Q

CSR

Q: How does the CPU determine what to execute when an interrupt is

Q: After handling an interrupt, where does the CPU resume execution?

mret

Q: How does the kernel identify which interrupt was triggered?

triggered? -
mitVel
w—e()c_
MCans&
O? @] me
pC) Code
wepc— 1 | 3=
a2uns ¢
"’é:g =\ Ny
e
v Aanc”&ff‘

INTERRWT

cyyY meim
” oppl_ apt
Mause
- L
mive€) \\\

L W

instrwcfions
(b) Exception si
C—
VN2 PVaN
‘7

ot s [DdeallbafN | oxe

f

| [Dedeadbert

"eC‘a.‘

Cheng Tan, 0SI

Interrupt

Exception Code

Description

NDW—; (©

0
1
2

Reserved

Supervisor software interrupt
Reserved

Machine software interrupt

4
5
6

Reserved

Supervisor timer interrupt
Reserved

Machine timer interrupt

e Y®)
5

Reserved

1
1
1
1
1
1
1
1
1
1 9 | Supervisor external interrupt
1 10 | Reserved
1 11 | Machine external interrupt
1 12-15 | Reserved
1 >16 | Designated for platform use
0 0 | Instruction address misaligned
0 6’ 1 | Instruction access fault G)
0 = 2 | Illegal instruction -
0 3 | Breakpoint @
0 4 | Load address misaligned
0 =9 5 | Load access fault
\ v 0 6 | Store/AMO address misaligned
0 =57 | Store /AMO access fault
0 8 | Environment call from U-mode
0 (QL‘(' ‘-B 9 | Environment call from S-mode
0 10 | Reserved
0 11 | Environment call from M-mode
0 12 | Instruction page fault
0 13 | Load page fault
0 (Cbs 14 | Reserved
0 15 | Store/AMO page fault
0 16-23 | Reserved
0 24-31 | Designated for custom use
0 32-47 | Reserved
0 48-63 | Designated for custom use
0 >64 | Reserved

(- forwesd

rwcfiovy

?f Ty [’]e"

dle 'nS
4B <

+-> sys_invoke

Cheng Tan, 0SI

egos-2k+ syscall workflow

sys_send/recv (syscall.c)

(syscall.c)

USER SPACE

+-> trap_entry (cpu_intr.c)

+-> trap handler (kernel.c)

[switch to kernel stack]

+-> proc_syscall

(syscall.c)

+-> proc_send/recv (syscall.c)

|
+-> sys _yield (scheduler.c)

+->[context switch]

[ret]

[switch to user stack]

|
[ret]
[rét]
(ret]
[switcg back]
\

+-->[other proc running]--+

Loo Lot

PC : | Footr

cpy

mepe o PC

MW\

opP Code.

=]
RN

Kerms

Cau.
—) mlausR

1271 - oven/close/ readfiniia —Gocket/ bind feomnact],
(c) Syscall . "/941
- M\‘o\\\f‘/chMmV S tet = Pipe/ clpp2

Ql: how does tontrol transfer to the kernel? (trap to kernel)

X ception [{ eIt

—

Q2: how does kernel understand what the application wants?
That is, what information is needed for handling a syscall?

p3dk (X} addt . spe (A

o OU U-IMC/VV"S
ntpC (X) "
Q3: where is syscall-related information stored? QJOS:
. r¢l"\$-\&f$

5o /rec e
ok Aad frecv/yeld
. A

i) &5 Sysal frap -
% (k200 pooco — 1

&1 LY inuke L> MSIP of finip

@ Y 617“'(’(' éjffa\\ (_) F@Jﬁ?—ﬁ/ﬁ,ﬁfruﬁ
& 2 M\'WOW"\ o (2Gukion <>§u-t+\~/ﬂ€ i

@(9@.

(oeippea

Q: How could I know what privilege level the current CPU is running in?

RISC-V deliberately doesn't make it easy for code to discover what mode it is
running it because this is a virtualisation hole. As a general principle, code
should be designed for and implicitly know what mode it will run in.
Applications code should assume it is in U mode. The operating system should
assume it is in S mode (it might in fact be virtualised and running in U mode,
with things U mode can’t do trapped and emulated by the hypervisor).

[from https://forums.sifive.com/t/how-to-determine-the-current-execution-
privilege-mode/2823]

