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(a) Interrupt
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Q: How does the CPU determine what to execute when an interrupt is

Q: After handling an interrupt, where does the CPU resume execution?
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Q: How does the kernel identify which interrupt was triggered?
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Interrupt

Exception Code

Description
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0
1
2

Reserved

Supervisor software interrupt
Reserved

Machine software interrupt

4
5
6

Reserved

Supervisor timer interrupt
Reserved

Machine timer interrupt

e Y®)
5

Reserved

1
1
1
1
1
1
1
1
1
1 9 | Supervisor external interrupt
1 10 | Reserved
1 11 | Machine external interrupt
1 12-15 | Reserved
1 >16 | Designated for platform use
0 0 | Instruction address misaligned
0 6’ 1 | Instruction access fault G)
0 = 2 | Illegal instruction -
0 3 | Breakpoint @
0 4 | Load address misaligned
0 =9 5 | Load access fault
\ v 0 6 | Store/AMO address misaligned
0 =57 | Store /AMO access fault
0 8 | Environment call from U-mode
0 (QL‘(' ‘-B 9 | Environment call from S-mode
0 10 | Reserved
0 11 | Environment call from M-mode
0 12 | Instruction page fault
0 13 | Load page fault
0 (Cbs 14 | Reserved
0 15 | Store/AMO page fault
0 16-23 | Reserved
0 24-31 | Designated for custom use
0 32-47 | Reserved
0 48-63 | Designated for custom use
0 >64 | Reserved
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+-> sys_invoke
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egos-2k+ syscall workflow

sys_send/recv (syscall.c)

(syscall.c)

USER SPACE

+-> trap_entry (cpu_intr.c)

+-> trap handler (kernel.c)

[switch to kernel stack]

+-> proc_syscall

(syscall.c)

+-> proc_send/recv (syscall.c)

|
+-> sys _yield (scheduler.c)

+->[context switch]

[ret]

[switch to user stack]

|
[ret]
[rét]
(ret]
[switcg back]
\

+-->[other proc running]--+
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Ql: how does tontrol transfer to the kernel? (trap to kernel)
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Q2: how does kernel understand what the application wants?
That is, what information is needed for handling a syscall?
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Q3: where is syscall-related information stored? QJOS:
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Q: How could I know what privilege level the current CPU is running in?

RISC-V deliberately doesn't make it easy for code to discover what mode it is
running it because this is a virtualisation hole. As a general principle, code
should be designed for and implicitly know what mode it will run in.
Applications code should assume it is in U mode. The operating system should
assume it is in S mode (it might in fact be virtualised and running in U mode,
with things U mode can’t do trapped and emulated by the hypervisor).

[from https://forums.sifive.com/t/how-to-determine-the-current-execution-
privilege-mode/2823]



