
Week 6
CS4973/CS6640
02/10 2025
https://naizhengtan.github.io/25spring/

□ 1. last time: egos
□ 2. egos exception handling
□ 3. syscall in egos
□ 4. CPU privilege levels
□ 5. System virtualization

1. last time: egos

 * OS organization

 * egos design

 * egos boot

 * kernel ~= three handlers

RISC V most
earth M diff

instruct

Lab4 OS protection
NESS register

Ottffs U V leafmemory

monghickerel miguel

Ég fi6
Lips Tj fFf t.pe

Dass Kernel

Darth boot

De 4821495
main earth.c

Q 3ways to trap main cgrass.ci
to kernel sys proc

internet smell
Syscall
exception

(a) Interrupt

Q: How does the CPU determine what to execute when an interrupt is
triggered?

Q: After handling an interrupt, where does the CPU resume execution?

Q: How does the kernel identify which interrupt was triggered?

(b) Exception

I
what code CSR

Mtvec

mepc Tret

Mcause

CPU mem
CPU mem

appcode
appt appl

a itDD
Fiendfy ifeng.EE
INTERRUPT NTERRB9

ge EqaEinstructions

1 apr

men men n

Ptr Dedeadbat

I ij
p

oxdeadbeet

 	

Volume II: RISC-V Privileged Architectures V20211203 39

Interrupt Exception Code Description
1 0 Reserved
1 1 Supervisor software interrupt
1 2 Reserved
1 3 Machine software interrupt
1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Reserved
1 7 Machine timer interrupt
1 8 Reserved
1 9 Supervisor external interrupt
1 10 Reserved
1 11 Machine external interrupt
1 12–15 Reserved
1 �16 Designated for platform use
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–23 Reserved
0 24–31 Designated for custom use
0 32–47 Reserved
0 48–63 Designated for custom use
0 �64 Reserved

Table 3.6: Machine cause register (mcause) values after trap.

Cheng Tan, OSI

egos-2k+ syscall workflow

sys_send/recv (syscall.c)
 | ^
 +-> sys_invoke (syscall.c) [ret]
 | USER SPACE |
-----[trap]---|----
 | KERNEL |
 +-> trap_entry (cpu_intr.c) [mret]
 | |
 +-> trap_handler (kernel.c) [ret]
 [switch to kernel stack] [switch to user stack]
 ... |
 | |
 +-> proc_syscall (syscall.c) [ret]
 | |
 +-> proc_send/recv (syscall.c) [ret]
 | |
 +-> sys_yield (scheduler.c) [ret]
 | |
 +->[context switch] [switch back]
 | |
 +-->[other proc running]--+

Cheng Tan, OSI

N9Ya

timmer so

T.EE i i
ecall

labyE IB

ftp.ffffpcioa171ftlabs

stack

CPU mem

appcode

IT

I handler Kernel

hey Incause

asexite

Linux
Fs x

(c) Syscall

Q1: how does control transfer to the kernel? (trap to kernel)

Q2: how does kernel understand what the application wants?
 That is, what information is needed for handling a syscall?

Q3: where is syscall-related information stored?

f
open close read write socket bind connect Listen
mkdirchmod Stat Pipedup2

exception interup

pidixladdtTattmentswepclx1

mn
noOR

mem
stack

else egos Syscall trap
0 200 0000 1

Q1 Sys invokes MSIP of mip

Q2 struct assail tiffQ3 wellknown mem location

Q: How could I know what privilege level the current CPU is running in?

"""
RISC-V deliberately doesn't make it easy for code to discover what mode it is
running it because this is a virtualisation hole. As a general principle, code
should be designed for and implicitly know what mode it will run in.
Applications code should assume it is in U mode. The operating system should
assume it is in S mode (it might in fact be virtualised and running in U mode,
with things U mode can’t do trapped and emulated by the hypervisor).
"""
[from https://forums.sifive.com/t/how-to-determine-the-current-execution-
privilege-mode/2823]

