
OS organization part I:
the first 3 steps of building an

operating system

[borrowed from Yunhao Zhang’s
CS 4411/5411: Practicum in Operating Systems, 22fall;

customized by Cheng Tan]

• Step #3: understand computer architecture
• Step #2: understand interrupt and exception
• Step #1: understand context-switch

Step1-3 of building an OS

• Step #3: understand computer architecture
• memory layout
• running a program
• calling convention

• Step #2: understand interrupt and exception
• Step #1: understand context-switch

Step1-3 of building an OS

Before building an OS, you have

Computer Hardware
documents

Two important documents

From the CPU vendor From the computer vendor

What are the registers and
instructions supporting an

operating system?

How to control devices?

Your labs, egos-2k+
• RISC-V and SiFive documents
• (which are simpler and shorter than Intel/Dell)

Chapter4 of is memory map

CPU debug @0x0000_0000
(ignore this for your labs)

Device control @0x0200_0000

Boot ROM @0x2000_0000
Main memory @0x8000_0000
(main memory ≤2GB in this architecture)

How does egos-2k+
use the memory?

(Read “egos-2k+ memory layout” on the Reference page)

• Step #3: understand computer architecture
• memory layout
• running a program
• calling convention

• Step #2: understand interrupt and exception
• Step #1: understand context-switch

Step1-3 of building an OS

✅

provides a hello world

Step#1: compile
the hello-world

program in Linux

CPU debug

Device control

Boot ROM
Main memory

with special tools
provided by SiFive

Step#2: copy the
compiled code to

the boot ROM

Enter the context of hello world

Step#3: press the
boot button on the

computer

CPU debug

Device control

Boot ROM
Main memory

Step#4: CPU set
instruction pointer
to the beginning of

boot ROM Step#5: an li instruction
sets the stack pointer to

main memory

hello-world prints to screen

CPU debug

Device control

Boot ROM
Main memory

Step#6: a call
instruction calls main()
which calls printf()

Step#7: during printf(),
store instructions will send

data to the screen

Step#8: the screen
shows “Hello World!”

Question: Where (in memory) is the first
kernel instruction executed by CPU?

(use gdb to tell)

Question:
How does printf() work?

• Step #3: understand computer architecture
• memory layout
• running a program
• calling convention

• Step #2: understand interrupt and exception
• Step #1: understand context-switch

Step1-3 of building an OS

✅

✅

Calling convention in RISC-V

Table 25.1 of RISC-V manual, volume1

main()
printf()

main()
main()
printf()
printf()

printf()

main()
main()

main()

Function call step#1
<main>:

. . .
Store caller-saved registers on the stack
Call printf (set ra to the address of)
Restore caller-saved registers
. . .

<printf>:
Store callee-saved registers on the stack
. . .
Restore callee-saved registers
Return to main() (set pc to ra)

Function call step#2
<main>:

. . .
Store caller-saved registers on the stack
Call printf (set ra to the address of)
Restore caller-saved registers
. . .

<printf>:
Store callee-saved registers on the stack
. . .
Restore callee-saved registers
Return to main() (set pc to ra)

Function call step#3
<main>:

. . .
Store caller-saved registers on the stack
Call printf (set ra to the address of)
Restore caller-saved registers
. . .

<printf>:
Store callee-saved registers on the stack
. . .
Restore callee-saved registers
Return to main() (set pc to ra)

Function call step#4
<main>:

. . .
Store caller-saved registers on the stack
Call printf (set ra to the address of)
Restore caller-saved registers
. . .

<printf>:
Store callee-saved registers on the stack
. . .
Restore callee-saved registers
Return to main() (set pc to ra)

Function call step#5
<main>:

. . .
Store caller-saved registers on the stack
Call printf (set ra to the address of)
Restore caller-saved registers
. . .

<printf>:
Store callee-saved registers on the stack
. . .
Restore callee-saved registers
Return to main() (set pc to ra)

Function call step#6
<main>:

. . .
Store caller-saved registers on the stack
Call printf (set ra to the address of)
Restore caller-saved registers
. . .

<printf>:
Store callee-saved registers on the stack
. . .
Restore callee-saved registers
Return to main() (set pc to ra)

• Step #3: understand computer architecture
• memory layout
• running a program
• calling convention

• Step #2: understand interrupt and exception
• Step #1: understand context-switch

Step1-3 of building an OS

✅

✅

✅

Question: Can we simultaneously
run multiple helloworlds?

Yes, time-sharing/multiplexing CPUs;
namely, adding a timer handler.

• Step #3: understand computer architecture
• Step #2: understand interrupt and exception

• control and status registers (CSR)
• "inserting" a call to the handler function

• Step #1: understand context-switch and multi-threading

Step1-3 of building an OS

Control and status registers (CSR)

• There are many registers other than the 32 user-level ones:

• misa: 32-bit or 64-bit?

• mhartid: the core ID number

• mstatus: the machine status

• mtvec, mie, mtime, mtimecmp: interrupt handling

Recap: timer interrupt
• How to register an interrupt handler?

• write the address of handler function to mtvec

• How to set a timer?

• write (mtime + QUANTUM) to mtimecmp

• How to enable timer interrupt?

• set certain bit of mstatus and mie to 1

int quantum = 50000;

void handler() {
earth->tty_info("Got timer interrupt.");
mtimecmp_set(mtime_get() + quantum);

}

int main() {
earth->tty_success("A timer interrupt example.");

asm("csrw mtvec, %0" ::"r"(handler));
mtimecmp_set(mtime_get() + quantum);

int mstatus, mie;
asm("csrr %0, mstatus" : "=r"(mstatus));
asm("csrw mstatus, %0" ::"r"(mstatus | 0x8));
asm("csrr %0, mie" : "=r"(mie));
asm("csrw mie, %0" ::"r"(mie | 0x80));

while(1);
}

Recap: a timer handler program

Register handler
Set a timer

Set a timer

Enable timer interrupt

What do interrupts look like from a
CPU’s point of view?

Assume an interrupt

<some user function>:
. . .
<interrupt will happen here>
. . .

<handler>:
. . .

Intuition: CPU/OS "inserts" these code

<some user function>:
. . .
Store caller-saved registers on the stack
Call handler (set ra to the address of)
Restore caller-saved registers
. . .

<handler>:
Store callee-saved registers on the stack
. . .
Restore callee-saved registers
Return to some_user_function() with ra

Cleanup these code
<some user function>:

. . .
Store caller-saved registers on the stack
Call handler (set ra to the address of)
Restore caller-saved registers
. . .

<handler>:
Store all registers on the stack
. . .
Restore all registers
Return to some_user_function() with ra

Handler returns to the same context

<some user function>:
. . .
Call handler (set ra to the address of)
. . .

<handler>:
Store all registers on the stack
. . .
Restore all registers
Return to some_user_function() with ra

Question
How does the handler function switch
to the context to a different process?

First, replacing ra with CSR mepc

<some user function>:
. . .
// mepc: machine exception program counter
Call handler (set mepc to the address of)
. . .

<handler>:
Store all registers on the stack
. . .
Restore all registers
Return to some_user_function() with mepc

Then, switch context with mepc
<some user function>:

. . .
Call handler (set mepc to the address of)
. . .

<handler>:
Store all registers on the stack
. . .
Set mepc to the code section of another thread
Restore all registers
Switch to another process with mepc

A demo using mepc and mret
void thread0() { while(1) { printf(“.”); } }
void thread1() { while(1) { printf(“#”); } }

int next_thread = 0;
void handler() {

next_thread = 1 - next_thread;
asm("csrw mepc, %0" ::"r"((next_thread == 0)? thread0 : thread1));

mtimecmp_set(mtime_get() + quantum); // reset timer
asm("li sp, 0x80002000”); // set stack pointer
asm(“mret”); // forget previous thread and start a new thread

}

Brief summary
• The interrupt handler function

• Stores all register on stack, instead of callee-saved

• Uses mret and mepc instead of ret and ra

• This is why, in the demo code, there is one line:

• void handler() __attribute__((interrupt));

• telling the compiler this function is an interrupt hander

Question: There are three ways to
trap to kernel. What are they?

They are interrupts, exceptions, and syscalls.

void kernel() { // registered to CSR mtvec
int mcause;
__asm__ volatile("csrr %0, mcause" : "=r"(mcause));

int id = mcause & 0x3ff; // take the last 10 bits
if (mcause & (1 << 31)) { // most significant bit is 1?

if (id == 7) { timer_handler(); }
} else {

if (id == 8) { syscall_handler(); }
else { fault_handler(); }

}
}

Kernel ≈ 3 handlers (*)

Thread1: I/O-bound (zoom)
Thread2: CPU-bound

(matrix computation)

Application

Kernel

Timer Timer

System call for
network send

Network card
interrupt: send

completes

System call for
network receive

Timer

Network card
interrupt: receive

packet

. . .

CPU view of a running computer

• Step #3: understand computer architecture
• Step #2: understand interrupt and exception

• control and status registers (CSR)
• "inserting" a function call to the handler

• Step #1: understand context-switch and multi-threading

Step1-3 of building an OS

✅

✅

• Step #3: understand computer architecture
• Step #2: understand interrupt and exception
• Step #1: understand context-switch
• program context
• switching from one process to another

Step1-3 of building an OS

Simplified but not by much:
context = memory abstraction

+ CPU registers

data structures and algorithms

Memory
Pointer

Object
Reference

Recall RISC-V asm instructions

Interface

• load / store instructions

• instruction / stack pointer registers

Content 1st byte 2nd byte 3rd byte …… 2^32th byte

Address 0x0000 0000 0x0000 0001 0x0000 0002 …… 0xFFFF FFFF

From physics to abstraction

• An ECE course would study voltage, current, etc.

• A CS course studies the abstraction of memory.

• i.e., a simple math model, such as

A program’s view of the memory

Code

int str_len = 14;

int main() {
char* str = malloc(str_len);
memcpy(str, “Hello World!\n”, str_len);
printf(“%s”, str);
return 0;

}
Read-only data

Data

Stack

Heap

Simplified but not by much:
context = memory abstraction

+ CPU registers

OS is a program

Code

Stack

OS
code & stack

Zoom is another program

Code

Stack

Code

Stack

OS
code & stack

Zoom
code & stack

Add CPU into the picture

Code

Stack

Code

Stack

OS
code & stack

Zoom
code & stack

CPU

Stack pointer register

Instruction pointer register

CPU in the context of OS

Code

Stack

Code

Stack

OS
code & stack

Zoom
code & stack

CPU

Stack pointer register

Instruction pointer register

CPU in the context of Zoom

Code

Stack

Code

Stack

OS
code & stack

Zoom
code & stack

CPU

Stack pointer register

Instruction pointer register

Memory view in practice
(before virtual memory)

Code

Stack

Code

Stack

physical memory

CPU

Stack pointer register

Instruction pointer register

Memory view in practice
(after virtual memory)

Code

Stack

Code

Stack

physical memory

CPU

Stack pointer register

Instruction pointer register

Code

Stack

Zoom’s
address space

• Step #3: understand computer architecture
• Step #2: understand interrupt and exception
• Step #1: understand context-switch
• program context
• switching from one process to another

Step1-3 of building an OS

✅

Switching from one process to another

• Context switch in egos-2k+:

• switch the memory abstraction from one to another
(read earth/cpu_mmu.c)

• switch the CPU registers from one to another
(read grass/kernel.c)

Next, about OS organization

