handout_w05a Cheng Tan, 0S| 2/3/26, 2:19 AM

1. Machine-mode exception CSRs
a) mstatus

Machine Status, holds the global interrupt enable,
with a plethora of other state.

along

b) mie
Machine Interrupt Enable, lists which interrupts the processor
can take and which it must ignore

c) mcause
Machine Exception Cause, indicates which exception occurred
d) mtvec
Machine Trap Vector, holds the address the processor jumps to
when an exception occurs

e) mepc
Machine Exception PC, points to the instruction where the
exception occurred

f) mtval
Machine Trap Value, holds additional trap information: the
faulting address for address exceptions, the instruction itself
for illegal instruction exceptions, and zero for other exceptions

g) mip

Machine Interrupt Pending, lists the interrupts currently pending

2. egos-2k+ process management

a) process control block (PCB)

[grass/process.h]

struct process {
int pid;
struct syscall syscall;
enum proc_status status;
uint mepc, saved registers[32];

// scheduling attributes
union {
unsigned char
unsigned int

chars[64];
ints[16];

float floats([16];
unsigned long long longlongs([8];
double doubles[8];

} schd_attr;
}i

Page 1 of 2

handout_w05a

b)

c)

Cheng Tan, 0S| 2/3/26, 2.19 AM
global process data structures

[grass/kernel.c]

uint core_in_kernel;

uint core_to proc_idx[NCORES];

struct process proc_set[MAX NPROCESS + 1];

/* proc set[0] is a place holder for idle cores. */

[grass/process.h]

#define curr_proc_idx (core_to_proc_idx[core_in_kernel])
#define curr_pid (proc_set[curr_proc_idx].pid)

#define curr status (proc_set[curr proc idx].status)

#define curr saved (proc_set[curr proc idx].saved registers)
process life cycle

[grass/scheduler.c]
state-transition callback functions:
* proc_on_arrive (int pid): when pid is created
* proc_on_sched in(int pid) when pid is scheduled to run
* proc_on_sched_out(int pid) when pid is descheduled
* proc_on_stop(int pid): when pid is destroyed

a process's life cycle:

proc_on arrive() ->
proc_on_sched in() -> [running] -> proc_on_sched out() -> [others] ->
proc_on_sched in() -> [running] -> proc_on sched out() -> [others] ->

—-> proce_on_stop ()

Page 2 of 2




