
Page 1 of 2

handout_w05a 2/3/26, 2:19 AM

1. Machine-mode exception CSRs

 a) mstatus
 Machine Status, holds the global interrupt enable, along
 with a plethora of other state.

 b) mie
 Machine Interrupt Enable, lists which interrupts the processor
 can take and which it must ignore

 c) mcause
 Machine Exception Cause, indicates which exception occurred

 d) mtvec
 Machine Trap Vector, holds the address the processor jumps to
 when an exception occurs

 e) mepc
 Machine Exception PC, points to the instruction where the
 exception occurred

 f) mtval
 Machine Trap Value, holds additional trap information: the
 faulting address for address exceptions, the instruction itself
 for illegal instruction exceptions, and zero for other exceptions

 g) mip
 Machine Interrupt Pending, lists the interrupts currently pending

2. egos-2k+ process management

 a) process control block (PCB)

 [grass/process.h]

 struct process {
 int pid;
 struct syscall syscall;
 enum proc_status status;
 uint mepc, saved_registers[32];

 // scheduling attributes
 union {
 unsigned char chars[64];
 unsigned int ints[16];
 float floats[16];
 unsigned long long longlongs[8];
 double doubles[8];
 } schd_attr;
 };

Cheng Tan, OSI

Page 2 of 2

handout_w05a 2/3/26, 2:19 AM

 b) global process data structures

 [grass/kernel.c]

 uint core_in_kernel;
 uint core_to_proc_idx[NCORES];
 struct process proc_set[MAX_NPROCESS + 1];
 /* proc_set[0] is a place holder for idle cores. */

 [grass/process.h]

 #define curr_proc_idx (core_to_proc_idx[core_in_kernel])
 #define curr_pid (proc_set[curr_proc_idx].pid)
 #define curr_status (proc_set[curr_proc_idx].status)
 #define curr_saved (proc_set[curr_proc_idx].saved_registers)

 c) process life cycle

 [grass/scheduler.c]

 state-transition callback functions:

 * proc_on_arrive(int pid): when pid is created

 * proc_on_sched_in(int pid) when pid is scheduled to run

 * proc_on_sched_out(int pid) when pid is descheduled

 * proc_on_stop(int pid): when pid is destroyed

 a process's life cycle:

 proc_on_arrive() ->
 proc_on_sched_in() -> [running] -> proc_on_sched_out() -> [others] ->
 proc_on_sched_in() -> [running] -> proc_on_sched_out() -> [others] ->
 ...
 -> proce_on_stop()

Cheng Tan, OSI

