
Week 03a
CS6640
01/20 2026
https://naizhengtan.github.io/26spring/

□ 0. Admin
□ 1. Recap: threading
□ 2. egos assembly I
□ 3. Context switches in user-space
□ 4. Cooperative vs. Preemptive multithreading in user-level
□ 5. The difficulty: multi-core concurrency

Q: what C program "components" do the four carry?
 -- stack: ?
 -- text: ?
 -- heap: ?
 -- data: ?

Q: are all four absolutely necessary? Can we get rid of some?

Y

E.IEpiiitg.n17neEIXIEIEII
1HWI P2

HInaging

ofthirds
Createthirds

scheduling

Contextswitch

gs
Flaba

localvars

Page 1 of 4

handout_asm 1/19/26, 9:00 PM

OSI Handout Week03.a: RISC-V assembly I

1. Background I: Registers

+-----------+-----------+-------------------------------+--------+
| Register | ABI Name | Description | Saver |
+-----------+-----------+-------------------------------+--------+
x0	zero	Zero constant	—
x1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
x3	gp	Global pointer	—
x4	tp	Thread pointer	—
x5–x7	t0–t2	Temporaries	Caller
x8	s0 / fp	Saved / frame pointer	Callee
x9	s1	Saved register	Callee
x10–x11	a0–a1	Function args / return values	Caller
x12–x17	a2–a7	Function args	Caller
x18–x27	s2–s11	Saved registers	Callee
x28–x31	t3–t6	Temporaries	Caller
+-----------+-----------+-------------------------------+--------+
[see also "RISC-V registers" in Reference page]

Cheng Tan, OSI

Page 2 of 4

handout_asm 1/19/26, 9:00 PM

2. Background II: RISC-V assembly I

 a) addi rd, rs1, immediate

 rd = rs1 + immediate

 b) sw rs2, offset(rs1)

 Memory[rs1 + offset] = rs2

 c) mv rd, rs1

 rd = rs1

 d) call rd, symbol

 rd = pc+4
 pc = &symbol

 If rd is omitted, ra is implied.

 e) ret

 pc = ra

 f) See others in "RISC-V instruction listings"
 (on Reference page of OSI homepage)

Cheng Tan, OSI

TrÉogram
counter

It

mum D
beef

fooc.at
swse88aa.in 4F

I 9 If affiste
o

foghrns.is

Page 3 of 4

handout_asm 1/19/26, 9:00 PM

3. Hellworld's C code (headers omitted)

 1 void print_hello() {
 2 printf("Hello world!\n");
 3 }
 4
 5 int main() {
 6 int a = 1;
 7 print_hello();
 8 }

Cheng Tan, OSI

Page 4 of 4

handout_asm 1/19/26, 9:00 PM

4. Helloworld's asm code (simplified)

 1 print_hello():
 2 // void print_hello() {
 3 addi sp,sp,-16
 4 sw ra,12(sp)
 5 sw s0,8(sp)
 6 addi s0,sp,16
 7 // printf("Hello world!\n");
 8 lui a5,0x80208
 9 mv a0,a5
 10 jal 80200534 <my_printf>
 11 // }
 12 nop
 13 lw ra,12(sp)
 14 lw s0,8(sp)
 15 addi sp,sp,16
 16 ret
 17
 18
 19 main():
 20 // int main() {
 21 addi sp,sp,-32
 22 sw ra,28(sp)
 23 sw s0,24(sp)
 24 addi s0,sp,32
 25 // int a = 1;
 26 li a5,1
 27 sw a5,-20(s0)
 28 // print_hello();
 29 jal 80200010 <print_hello>
 30 li a5,0
 31 // }
 32 mv a0,a5
 33 lw ra,28(sp)
 34 lw s0,24(sp)
 35 addi sp,sp,32
 36 ret

Cheng Tan, OSI

0802085 11
prologue

I Iff
419ᵗʰ

epilogue

a

ÉÉÉ printhello

LOW

Q: which are in process's context?
 A. %pc
 B. %sp
 C. stack
 D. heap
 E. other processes' memory

Q: which are in thread's context?
 A. %pc
 B. %sp
 C. stack
 D. heap
 E. other processes' memory

Context smitch

pa
p
P2 P3

stineI

Page 1 of 3

handout_ctx 1/19/26, 8:59 PM

OSI Handout Week03.a: Context Switch

1. Context switch in user-space:

 a) void ctx_start(void** old_sp, void* new_sp);

 This will be used when starting a new thread.
 It will save registers on the old stack,
 store current stack pointer to “old_sp”,
 switch stack to the “new_sp”,
 and
 finally call ctx_entry().

 b) void ctx_switch(void** old_sp, void* new_sp);

 This will be used for context switch.
 It will save registers on the old stack,
 store current stack pointer to “old_sp”,
 switch stack to the “new_sp”,
 and
 restore registers from the new stack,
 finally return (to ra).

Cheng Tan, OSI

Page 2 of 3

handout_ctx 1/19/26, 8:59 PM

2. user/apps/thread.s

 1 .macro SAVE_REGISTERS
 2 sw s0,4(sp) /* Save callee-saved registers */
 3 sw s1,8(sp)
 4 sw s2,12(sp)
 5 sw s3,16(sp)
 6 sw s4,20(sp)
 7 sw s5,24(sp)
 8 sw s6,28(sp)
 9 sw s7,32(sp)
 10 sw s8,36(sp)
 11 sw s9,40(sp)
 12 sw s10,44(sp)
 13 sw s11,48(sp)
 14 sw ra,52(sp) /* Save return address */
 15 .endm
 16
 17 .macro RESTORE_REGISTERS
 18 lw s0,4(sp) /* Restore callee-saved registers */
 19 lw s1,8(sp)
 20 lw s2,12(sp)
 21 lw s3,16(sp)
 22 lw s4,20(sp)
 23 lw s5,24(sp)
 24 lw s6,28(sp)
 25 lw s7,32(sp)
 26 lw s8,36(sp)
 27 lw s9,40(sp)
 28 lw s10,44(sp)
 29 lw s11,48(sp)
 30 lw ra,52(sp) /* Restore return address */
 31 .endm
 32
 33 /* void ctx_start(void** old_sp, void* new_sp); */
 34 /* ^ ^ */
 35 /* | | */
 36 /* a0 a1 */
 37 ctx_start:
 38 addi sp,sp,-64
 39 SAVE_REGISTERS
 40 sw sp,0(a0) /* Save the current stack pointer */
 41 mv sp,a1 /* Switch the stack */
 42 call ctx_entry /* Call ctx_entry() */
 43
 44 /* void ctx_switch(void** old_sp, void* new_sp); */
 45 /* ^ ^ */
 46 /* | | */
 47 /* a0 a1 */
 48 ctx_switch:
 49 addi sp,sp,-64
 50 SAVE_REGISTERS
 51 sw sp,0(a0) /* Save the current stack pointer */
 52 mv sp,a1 /* Switch the stack */
 53 RESTORE_REGISTERS
 54 addi sp,sp,64
 55 ret

Cheng Tan, OSI

I

II m.name

EEI.is EeIfaI
L

Page 3 of 3

handout_ctx 1/19/26, 8:59 PM

3. An example use of ctx_start+ctx_entry

 void thread_create(void (*f)(void *), void *arg, unsigned int stack_size) {

 tcb = create_thread_control_block();
 old_tcb = current_running_thread_control_block();

 … // do something necessary

 void **old_sp = … // old stack pointer’s address in old_tcb
 void *new_sp = … // new stack pointer in tcb

 ctx_start(old_sp, new_sp);
 }

 void ctx_entry(void){

 … // do something useful

 (*f)(arg); // run function “f” received by “thread_create”

 … // wrap up
 }

Cheng Tan, OSI

5,0 0

