Week 03a

CS6640

01/20 2026
https://naizhengtan.github.io/26spring/

/0. Admin
E{i. Recap: threading

O 2. egos assembly I
0 3. Context switches in user-space
O 4. Cooperative vs. Preemptive multithreading in user-level
0 5. The difficulty: multi-core concurrency
oro6sss oy
,/;;;t‘—ZQTW T2
Pe § i o
D]
Cou,,k& V\&Viwéﬁ(aﬁ HZGH

[:) A 7*3#2

l Stacks
05 Climse) ¥ I 22
A [
codg

f;c

O wmjl‘v-cf '3{' ‘HW(S
® (reod= -H/um(S

@)schubﬂbé

Q: what C program "components" do the four carry?
-— stack: ? |ocal Varg
-- text: ? Code
—-- heap: ? alloc et
-- data: ? A(obal vHS

Q: are all four absolutely necessary? Can we get rid of some?

handout_asm
OSI Handout WeekO3.a: RI
1. Background I: Registe
o o
| Register | ABI Name
fomm Fomm -
| %0 | zero
| x1 | ra
| x2 | sp
| %3 I gp
| x4 | tp
| x5-x7 | t0-t2
| x8 | / fp
() I
| x10-x11 | a0-al
| x12-x17 | a2-a7
| x18-x27 | s2-s11
| x28-x31 | t3-t6
o o
[see also "RISC-V regist

Cheng Tan, 0SI

1/19/26, 9:00 PM

SC-V assembly I

. pC : Projrowa cuuier

B e ettt tomm - +

| Description | Saver |
o o +

| Zero constant | — |

| Return address | Caller | 1‘1.
| Stack pointer & | Callee |

| Global pointer | —

| Thread pointer | = {Oo[a l‘
| Temporaries | Caller)
| Saved / frame pointer | Callee |

| Saved register Z | Callee |

| Function args / return values | Caller |

| Function args — | Caller |

| Saved registers | Callee |

| Temporaries | Caller |
ettt Fm—————— +

ers" in Reference page]

oo() g

\%fo §.r §

Page 1 of 4

handout_:

2.

asm

a)

c)

O ¢ f°°
d) Jeall rd, symbol
- —

Dret <

e)

£)

Background II:

Cheng Tan, 0SI

RISC-V assembly I

addi rd, rsl, immediate
P—0 e — —

rd = rsl + immediate L_/

Dxdﬂ‘} "’&f

1234

sw rs2, offset(rsl)
=

AL

Memory[rsl + offset] = |rs2
AN A~

€,0 (.
‘4)a{em“:@f

xoxey f
rd = pc+4 e

pc = &symbol &— ’—4 Ql(00 /{ASu
If is omitted,@ is implied. F?}J—:f7 PC

mv rd, rsl

Sw

rd = rsl

pc = ra
——™ ™}
See others in "RISC-V instruction listings"
(on Reference page of OSI homepage)

1/19/26, 9:00 PM

Page 2 of 4

handout_asm Cheng Tan, 0S| 1/19/26, 9:00 PM

3. Hellworld's C code (headers omitted)
void print_hello() {

printf ("Hello world!\n");
}

int main() {
int a = 1;
print_hello();

W doU s WN

Page 3 of 4

handout_

4.

FYD

asm

Helloworld's asm code

print hello():

// void print_hello() M

addi

Cheng Tan, 0SI

(simplified)

sp,sp,-16

1/19/26, 9:00 PM

oyg 02080

> “Hello worigw

sw ra, 12 (sp)
R sw s0,8 (sp)
addi s0,sp,16
printf el
,.}lul aSawx80208 000
mv a5
jal 80200534 <my_ printf>
nop ‘
1w ra, 12 (sp) > -7 ?
1w s0, 8 (sp) > P
uQ addi sp,sp,16 9 o (W
ret
pc 48 _/_,Vﬂ\
|m;ain()! A So
1 main() { Zj SL wan 3> ~ e (oldj
addi sp, sp,-32 - =
sw @ 28 (sp) <’ @
sw 50, 24(sg) & >
Zyaddi s0,5p, 32 Sp
// int a 1; a
C li as,1 &
a5,-20(s0) “
// print hello(); . 0
L jal 80 00010)<print hello> PV\W‘LIQ
a5 0 A e —,
mv a0,ab
1w ra,28 (sp)
1w s0,24 (sp)
addi sp,sp,32
ret

Page 4 of 4

. Condext Sunl4Ch -

_/—\

@ 2 >
(7/(\1 ‘ p3

| !

Q: ich are in process's context?
A, %pc
B.| %sp

| C.|] stack
D,/ heap

E. other processes' memory

Q: which are in thread's context?

A\ ¥pcC
VAV $sp

C. stack

D. heap

E. other processes' memory

\4

handout_ctx Cheng Tan, 0S|

OSI Handout Week03.a: Context Switch

1. Context switch in user-space:

a) voidvoid** old_sp, void* new_sp);

This wi
—_?It will isters on the old stack,
@store current sStack pointer to “old_sp”,
@switch stack to the “new sp”,
and
finally call ctx_entry(). ou U_"” &
—
b) void ctx switch(void** old_sp, void* new_sp);

be used when starting a new thread.

This will be used for context switch.

It will save registers on the old stack,
store current stack pointer to “old_sp”,
switch stack to the “new_sp”,
and
restore registers from the new stack,
finally return (to ra).

wrin thrre|

i Creat€
thrd 3

Xo(o(-?P = =)
L

1/19/26, 8:59 PM

Page 1 of 3

handout_ctx

Cheng Tan, 0SI

2. user/apps/thread.s

O Jo U WN

.macro SAVE REGISTERS
sw s0,4 (sp)
sw sl,8(sp)
sw s2,12 (sp)
sw s3,16(sp)
sw s4,20(sp)
sw s5,24 (sp)
sw s6,28 (sp)
sw s7,32(sp)
sw s8,36 (sp)
sw s9,40 (sp)
sw s10,44 (sp)
sw s11,48(sp)

sw ra, 52 (sp) /* Save return address */

.macro RESTORE_REGISTERS
lw s0,4 (sp)
1w s1,8(sp)
1w s2,12 (sp)
lw s3,16(sp)
1w s4,20 (sp)
1w s5,24 (sp)
lw s6,28(sp)
lw s7,32(sp)
lw s8,36(sp)
1w s9,40 (sp)
1w s10,44 (sp)
1w s11,48(sp)

lw ra, 52 (sp) /* Restore return address
.endm
/* void ctx_start (void** @ void* new_sp);
/* [S o ~
/*
/*

ctx_start:
addi sp,sp,-64
SAVE_REGISTERS

..gsw

’mv B ra— /* Switch the stack *
;call ctxentry /* Call ctx_entry() *
/* void ctx switch(void** old sp, void* new Sp);
/* - A - ~ -
/* | I

/* a0 al
ctx_switch:
addi sp,sp,-64
SAVE_REGISTERS
sw sp,0(a0)
mv sp,al
RESTORE_REGISTERS
addi sp,sp, 64
ret

/* Switch the stack */

/* Save callee-saved registers */

*/

*/
*/
*/
*/

/* Restore callee-saved registers */

/* Save the current stack pointer */

1/19/26, 8:59 PM

Page 2 of 3

handout_ctx Cheng Tan, 0S| 1/19/26, 8:59 PM

3. An example use of ctx start+ctx_entr

void thread create(void [(*f) (void *), voi) unsigned in e {

'ﬁtcb = create_thread cgntrol block();
_*olditcb = current_r ningithreadicowéoliblock();

. // do something/necessary /

void **old_sp = .. // old stack pointer’s address in old tcb
void *new_57= // yw stack pointer in tcb

ctx_start (old sp, new_sp) i
}
void ctx/entry(void) {
/ doZnething useful
\.k (*f) (arg); // run function “f” received by “thread create”
- —_— —

.. // wrap up

Page 3 of 3

