
Week 3.b
CS6640
01/23 2026
https://naizhengtan.github.io/26spring/

□ 0. admin
□ 1. normal vs. kernel debugging
□ 2. Memory layout in egos
□ 3. gdb

Q: When you debug, what usually takes more time?
 (e.g., finding where the bug is, or understanding why it happens?)

Q: What is your typical approach to debugging a program?

Q: What is one debugging habit you think helps the most?

 * "normal" c program
 + you do not need to understand hardware details (like CPU)
 + you have clear error messages
 + you do not have to worry about touching important memory
 (the program will be killed)
 + you do not use addresses directly
 + you have a nice address space containing your program only
 + you have a lot of tools (like IDE)

 * kernel programming
 - you need to understand hardware details (like CPU)
 - you have semi-clear error messages (if you know CPU)
 - your have to worry about touching important memory
 (the kernel will write something to there and later crash)
 - you sometimes need to use addresses directly
 - you do not have a nice address space
 - you have limited yet powerful tools

typos

produffin

t i

o -

p

 * ULT labs? a mix of the two
 + you need to understand hardware details (like CPU)
 - you have semi-clear error messages (if you know CPU)
 - your have to worry about touching important memory
 + you do not use addresses directly
 - you do not have a nice address space
 - you have limited yet powerful tools

 * some debugging principles
 - "die" earlier than later
 - use "assert" a lot
 - use "printf" but don't trust "printf" entirely
 - binary-printf is still useful
 - use "static analysis" more often (e.g., "git diff")

Terminal A B

make genusdb

991 21 risi gdb
C gdbinit

6640
C

okay
gdb

Cd

Page 1 of 2

handout_w3b 1/23/26, 1:39 AM

CS6640 Handout Week3.b

1. egos-2k+ memory layout I

HIGH MEM ADDR
 +----------------------+ <- 0x8080_0000 [RAM_END]
 | |
 | apps free pages | [APPS_PAGES_BASE .. RAM_END)
 | for mmu_alloc | (4MB)
 | |
 +----------------------+ <- 0x8040_0000 [APPS_PAGES_BASE]
 | | [APPS_STACK_TOP]
 | app stack |
 | (grows down) |
 +----------------------+
 | shell work dir |
 +----------------------+ <- 0x8030_2000 [SHELL_WORK_DIR]
 | syscall arg struct |
 +----------------------+ <- 0x8030_1000 [SYSCALL_ARG]
 | app args |
 +----------------------+ <- 0x8030_0000 [APPS_ARG]
 | |
 | app code + data | [APPS_ENTRY .. APPS_ARG)
 | (1MB) |
 | |
 +----------------------+ <- 0x8020_0000 [APPS_ENTRY]
 | | [EGOS_STACK_TOP]
 | egos stack |
 | (grows down) |
 +----------------------+
 | grass struct |
 +----------------------+ <- 0x8010_1000 [GRASS_STRUCT]
 | earth struct |
 +----------------------+ <- 0x8010_0000 [EARTH_STRUCT]
 | |
 | egos code + data | [RAM_START .. EARTH_STRUCT)
 | (1MB) |
 +----------------------+ <- 0x8000_0000 [RAM_START]
LOW MEM ADDR

Cheng Tan, OSI

Page 2 of 2

handout_w3b 1/23/26, 1:39 AM

2. gdb cheat sheet

Multi-core support
(gdb) info threads list all threads known to gdb
(gdb) thread <n> switch the current context to thread <n>

Breakpoints & watchpoints
(gdb) break main set a breakpoint on a function
(gdb) break basic.c:101 set breakpoint at file and line (or function)
(gdb) info breakpoints show breakpoints
(gdb) delete 1 delete a breakpoint by number
(gdb) watch expression set software watchpoint on variable
(gdb) info watchpoints show current watchpoints

Running the program
(gdb) c continue the program
(gdb) s a step in C; step into functions
(gdb) si a step in asm; step into functions
(gdb) n a step in C; step over functions
(gdb) ni a step in asm; but step over functions
(gdb) CTRL-C actually SIGINT, stop execution of current program
(gdb) finish finish current function's execution

Stack backtrace
(gdb) bt print stack backtrace
(gdb) info locals print automatic variables in frame
(gdb) info registers print registers sans floats

Browsing Data
(gdb) p expr print expression
(gdb) p/x expr print in hex
(gdb) p/t expr print in binary
(gdb) p/i expr print as instructions

(gdb) x/FMT address low-level examine command
(gdb) x/x 0x80001000 print memory in hex
(gdb) set var = expr assign value

(gdb) display/FMT expr display expression result at stop
(gdb) display/i $pc print next instruction
(gdb) undisplay delete displays

FMT (Format letters) are:
 o(octal), x(hex), d(decimal), u(unsigned decimal),
 t(binary), f(float), a(address), i(instruction), c(char), s(string)
 and z(hex, zero padded on the left).

Load a program's symbols
(gdb) add-symbol-file <elf> load symbol table from <elf>

Quit
(gdb) quit quit gdb

[borrowed and customized from
 https://gist.github.com/rkubik/b96c23bd8ed58333de37f2b8cd052c30]

Cheng Tan, OSI

12
8m 812207

in

its
Et i IEIi

