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recap: gdb w/ an example
OS organization

. egos desgin

O 3. egos-2k+ booting process
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* gdb basics

Scenario 1l: "what's wrong?"
- run to failure
- use gdb to see the final status

Scenario 2: "I suspect this is wrong"
- set a breakpoint

- continue the egos

- run until the breakpoint

- single step running & monitoring

a) Question: At what memory address does the CPU execute the first kernel
instruction?

b) Question: How does printf() work?

Cc) Question: How does context switching work in Lab 2?
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e 0OS architecture

Modern Operating Systems: Principles and Implementation

| Monolithic: a single piece of code serving all requests; high in coupling
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il ] % LR RE s (=it l=B B kerenl is mostly responsible for IPCs; services are running in user-level; low in coupling; IPC can be the bottleneck
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| l > i kernel only handles multiplexing resources (securely);
Exokernel: extra performance due to having hardware primitives

S target heterogeneous hardware and many-core machines
IV R 8 =T ol s 1=l B replace shared-memory model with shared-nothing model (msg passing)
treat OS as a distributed system
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Figure 1: An example exokernel-based system consisting of a thin
exokemnel veneer that exports resources to library operating systems
through secure bindings. Each library operating system implements
its own system objects and policies. Applications link against stan-
dard libraries (e.g., WWW, POSIX, and TCP libraries for Web ap-
plications) or against specialized libraries (e.g., a distributed shared
memory library for parallel applications).
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Figure 1: The multikernel model.
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& Improving IPC by kernel design, @1993
Exokernel: An Operating System Architecture for Application-Level Resource
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The multikernel: a new OS architecture for scalable multicore systems,
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egos-2k+ booting process I

———————— Simulate on QEMU-RISCV --—-———---
gemu-system-riscv32 -M virt -smp 4 -m 8M -bios tools/egos.bin -nographic
-drive if=pflash, format=raw,unit=1, file=tools/qemuROM.bin
-device sdhci-pci,addr=0x1
-device sd-card,drive=MMC
-drive if=none,file=tools/disk.img, format=raw,id=MMC
[CRITICAL] --- Booting on QEMU with core #2 ---
[SUCCESS] Finished initializing the tty and disk devices
[INFO] Use direct mode and put the address of the trap entry into mtvec
[SUCCESS] Finished initializing the MMU, timer and interrupts
[SUCCESS] Enter the grass layer
[INFO] Load kernel process #1: sys_process
[INFO] Load 0x4400 bytes to 0x80200000
[INFO] Load 0x510 bytes to 0x80208000
[SUCCESS] Enter kernel process GPID_ PROCESS
[INFO] Load kernel process #2: sys_terminal
[INFO] Load 0x3660 bytes to 0x80200000
[INFO] Load 0x274 bytes to 0x80208000
[SUCCESS] Enter kernel process GPID_TERMINAL
[INFO] sys_process receives: Finish GPID_TERMINAL initialization
[INFO] Load kernel process #3: sys_file
[INFO] Load 0x5040 bytes to 0x80200000
[INFO] Load 0x9c4 bytes to 0x80208000
[SUCCESS] Enter kernel process GPID FILE
[INFO] sys_process receives: Finish GPID_FILE initialization
[INFO] Load kernel process #4: sys_shell
[INFO] Load Ox4dad4 bytes to 0x80200000
[INFO] Load 0x89c bytes to 0x80208000
[CRITICAL] Welcome to the egos-2k+ shell!
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