Week 4.a

CS6640

01/27 2026
https://naizhengtan.github.io/26spring/

recap: gdb w/ an example
OS organization

. egos desgin

O 3. egos-2k+ booting process

Ooood
N~ O

* gdb basics

Scenario 1l: "what's wrong?"
- run to failure
- use gdb to see the final status

Scenario 2: "I suspect this is wrong"
- set a breakpoint

- continue the egos

- run until the breakpoint

- single step running & monitoring

a) Question: At what memory address does the CPU execute the first kernel
instruction?

b) Question: How does printf() work?

Cc) Question: How does context switching work in Lab 2?

HIGH
I
W(bc(40§()
i ! vﬁégwéw o
—

Low

e 0OS architecture

Modern Operating Systems: Principles and Implementation

| Monolithic: a single piece of code serving all requests; high in coupling

by L_———b

il] % LR RE s (=it l=B B kerenl is mostly responsible for IPCs; services are running in user-level; low in coupling; IPC can be the bottleneck

i i { _

| l > i kernel only handles multiplexing resources (securely);
Exokernel: extra performance due to having hardware primitives

S target heterogeneous hardware and many-core machines
IV R 8 =T ol s 1=l B replace shared-memory model with shared-nothing model (msg passing)
treat OS as a distributed system
\ BRZ

2010s

A

AL b
£))‘

Ner AR ¥ 4 & o
[Et’s'"g:[’n the evolution of OS organization and architecture by iehd
» !' ol ALY AL

Linux ke;nel architecture
(6wt bollowsrt

m Q Ap@m& Tools User space
— {o.b L
S0 I /27 A
Y / Y / L Y / Y Y Lﬁlég' Linux-Kernal
/ / | = PN (= vy =\
\H a4 (B .
Process emao File | / Device !
: Network ‘omponents
% manageme anagement systems drivers
Muititaskin Virtual b) Files,' Device accehp, W -
memory directorie terming B ality
b% ile syst H Network Softwar
L
protocols Support
Memory, Character

[

Funcionality

cheduler,
architecture-
specific

manager devices = . o t L 8
code . etworl ardware
_/ m drivers |~ Support
A A A A A @ LV g
Y Y Y Y Y
Hard disk, Various Network
CPU RAM CD, Floppy terminal aceiapler <— Hardware

disk equipment

Monolithic Kernel Microkernel
based Operating System Vl(('/f based Operating System
ape? D)

Application

Application UNIX
IPC

kernel
mode

RETCIEL] Hardware

7 A5

M,‘b: ,}%,
bl’o%v-é/r S claflon

Applications

Library operating systems

Exokernel {) Secure bindings

Hardware | Frame buffer| TLB Network\ Memory Disk

Figure 1: An example exokernel-based system consisting of a thin
exokemnel veneer that exports resources to library operating systems
through secure bindings. Each library operating system implements
its own system objects and policies. Applications link against stan-
dard libraries (e.g., WWW, POSIX, and TCP libraries for Web ap-
plications) or against specialized libraries (e.g., a distributed shared
memory library for parallel applications).

1ol o Tl o ey

Us.

/V\éj Prssi

r

I
S node OS node OS node OS node
Agreement : () Zamm—
algorithms 1 || State_}| || State State /[IK_A ssages)1+ State
: replig_ replica replica 1T replica
I
I
I

Arch-specific
code

Heterogeneous
cores

< Interconnect _§

Figure 1: The multikernel model.

e function calls
r-1

app 2

user

o
space

=||m
s | &

eavs B

simple monolithic kernel . microkernel [% T~ exokernel
(&) L 1 R Rloa roesse - - 2 : A

& Improving IPC by kernel design, @1993
Exokernel: An Operating System Architecture for Application-Level Resource
anagement, g@ 1995
The multikernel: a new OS architecture for scalable multicore systems,

2009

icrokernel Goes General: Performance and Compatibility in the HyM.en.g\
Predaction %icrokernel, 2024

handout_w04a

CS6640, Week 04a

1. egos architecture

M-mo

&
490> .e(.'C

M-moc

le

Cheng Tan, 0SI

1/27/26, 9:42 AM

system apps user apps
7
Sys_proc sys_file ult cat
- //
Sys_term sys_shell Is ¢
Ilal oo
|
(ah3 grass layer
- - 2
scheduler kernel process IPC
proc_set 1
interrupt timer mmu X
virtual
memory
tty UART disk

earth layer

;-

Page 1 of 3

Sysalll

=

handout_w04a Cheng Tan, 0S| 1/27/26, 9:42 AM

2.

W Jo U W

egos-2k+ booting process I

———————— Simulate on QEMU-RISCV --—-———---
gemu-system-riscv32 -M virt -smp 4 -m 8M -bios tools/egos.bin -nographic
-drive if=pflash, format=raw,unit=1, file=tools/qemuROM.bin
-device sdhci-pci,addr=0x1
-device sd-card,drive=MMC
-drive if=none,file=tools/disk.img, format=raw,id=MMC
[CRITICAL] --- Booting on QEMU with core #2 ---
[SUCCESS] Finished initializing the tty and disk devices
[INFO] Use direct mode and put the address of the trap entry into mtvec
[SUCCESS] Finished initializing the MMU, timer and interrupts
[SUCCESS] Enter the grass layer
[INFO] Load kernel process #1: sys_process
[INFO] Load 0x4400 bytes to 0x80200000
[INFO] Load 0x510 bytes to 0x80208000
[SUCCESS] Enter kernel process GPID_ PROCESS
[INFO] Load kernel process #2: sys_terminal
[INFO] Load 0x3660 bytes to 0x80200000
[INFO] Load 0x274 bytes to 0x80208000
[SUCCESS] Enter kernel process GPID_TERMINAL
[INFO] sys_process receives: Finish GPID_TERMINAL initialization
[INFO] Load kernel process #3: sys_file
[INFO] Load 0x5040 bytes to 0x80200000
[INFO] Load 0x9c4 bytes to 0x80208000
[SUCCESS] Enter kernel process GPID FILE
[INFO] sys_process receives: Finish GPID_FILE initialization
[INFO] Load kernel process #4: sys_shell
[INFO] Load Ox4dad4 bytes to 0x80200000
[INFO] Load 0x89c bytes to 0x80208000
[CRITICAL] Welcome to the egos-2k+ shell!
- /home/cs6640 %

Page 2 of 3

