
Week 4.b
CS6640
01/30 2026
https://naizhengtan.github.io/26spring/

□ 1. egos-2k+ booting process
□ 2. RISC-V assembly in C
□ 3. Timer interrupt

Q: why did a process finish already?

Booting

* in earth/boot.c

 Q: what does asm("csrr %0, mhartid" : "=r"(core_id)) do?

* in grass/init.c

 Q: Does it work to directly jump to APP_ENTRY? (instead of using 'mret')

* in sys_shell.c

 [answering the first question]

IE

a

Page 1 of 2

handout_w04a copy 1/30/26, 11:39 AM

CS6640, Week 04a

1. egos architecture
[…]

2. egos-2k+ booting process I

 1 -------- Simulate on QEMU-RISCV --------
 2 qemu-system-riscv32 -M virt -smp 4 -m 8M -bios tools/egos.bin -nographic
 3 -drive if=pflash,format=raw,unit=1,file=tools/qemuROM.bin
 4 -device sdhci-pci,addr=0x1
 5 -device sd-card,drive=MMC
 6 -drive if=none,file=tools/disk.img,format=raw,id=MMC
 7 [CRITICAL] --- Booting on QEMU with core #2 ---
 8 [SUCCESS] Finished initializing the tty and disk devices
 9 [INFO] Use direct mode and put the address of the trap_entry into mtvec
10 [SUCCESS] Finished initializing the MMU, timer and interrupts
11 [SUCCESS] Enter the grass layer
12 [INFO] Load kernel process #1: sys_process
13 [INFO] Load 0x4400 bytes to 0x80200000
14 [INFO] Load 0x510 bytes to 0x80208000
15 [SUCCESS] Enter kernel process GPID_PROCESS
16 [INFO] Load kernel process #2: sys_terminal
17 [INFO] Load 0x3660 bytes to 0x80200000
18 [INFO] Load 0x274 bytes to 0x80208000
19 [SUCCESS] Enter kernel process GPID_TERMINAL
20 [INFO] sys_process receives: Finish GPID_TERMINAL initialization
21 [INFO] Load kernel process #3: sys_file
22 [INFO] Load 0x5040 bytes to 0x80200000
23 [INFO] Load 0x9c4 bytes to 0x80208000
24 [SUCCESS] Enter kernel process GPID_FILE
25 [INFO] sys_process receives: Finish GPID_FILE initialization
26 [INFO] Load kernel process #4: sys_shell
27 [INFO] Load 0x4da4 bytes to 0x80200000
28 [INFO] Load 0x89c bytes to 0x80208000
29 [CRITICAL] Welcome to the egos-2k+ shell!
30 ➜ /home/cs6640 %

Page 2 of 2

handout_w04a copy 1/30/26, 11:39 AM

3. egos-2k+ booting process II

 CPU jmps to 0x80000000
 |
 +-> earth/boot.s:boot_loader
 |
 +-> earth/boot.c:boot
 |
 +-> grass/init.c:grass_entry
 |
 +-> grass.c:main
 |
 +-> ['mret' to APPS_ENTRY]
 |
 +-> apps/system/sys_proc.c:main
 |
 ...
 |
 +-> apps/system/sys_shell.c:main
 |
 +-> [your program]

029 coresspinning

Eftf g
c
c

D
XYE

envish

Page 1 of 2

handout_w04b 1/29/26, 10:08 PM

OSI Week4.b

1. Background: RISC-V assembly II

 Assembler instructions with C expression operands:

 asm(Template : OutputOperands : InputOperands)

 a) Template: a string that is the template for the assembler code.

 asm("lw ra,12(sp)");
 asm("ret");

 b) OutputOperands: the C variables modified by the instructions
 in the Template.

 void *sp;
 asm("mv %0, sp" : "=r"(sp));

 c) InputOperands: C expressions read by the instructions
 in the Template.

 void *sp = (void*)0x803fffc0;
 asm("mv sp,%0" :: "r"(sp));

 [read more: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html]

Cheng Tan, OSI

Page 2 of 2

handout_w04b 1/29/26, 10:08 PM

2. Timer interrupt handler

 void handler() {
 CRITICAL("Got a timer interrupt!");
 // (4) reset timer

 }

 int main() {
 CRITICAL("This is a simple timer example");

 // (1) register handler() as interrupt handler

 // (2) set a timer

 // (3) enable timer interrupt

 while(1);
 }

Cheng Tan, OSI

I a
return

Koting

Timer interrupts

[borrowed from Yunhao’s
CS 4411/5411: Practicum in Operating Systems, 22fall]

CPU

ifc items
A rid

B IN
in

Q: if you were a CPU designer, how would you
like to define the interrupt interface?

CPU view: Core-local Interrupt (CLINT)

A RISC-V core

CLINT

Figure 4 of Sifive FE310 manual

1 f
Instructions

PETHamda

Δ

A programmer’s view
void handler() {

printf("Got a timer interrupt!");
// (4) reset timer

}

int main() {
 // (1) register interrupt handler
 // (2) set a timer
 // (3) enable timer interrupt

 while(1);
}

The mtvec CSR

BASE MODE

bit1 bit0bit2bit31

RISC-V privileged spec

A programmer’s view
void handler() {

printf("Got a timer interrupt!");
// (4) reset timer

}

int main() {
 // (1) register interrupt handler
 // (2) set a timer
 // (3) enable timer interrupt

 while(1);
}

The mtime and mtimecmp CSRs

A RISC-V core

Sifive FE310 manual

CLINT

Machine time (mtime)

Machine time compare
(mtimecmp)

A timer interrupt is
triggered when

mtime > mtimecmp

CLINT CSRs are memory-mapped

Sifive FE310 manual

mtime_get()
reads 8 bytes from

mtimecmp_set()
writes 8 bytes to

A programmer’s view
void handler() {

printf("Got a timer interrupt!");
// (4) reset timer

}

int main() {
 // (1) register interrupt handler
 // (2) set a timer
 // (3) enable timer interrupt

 while(1);
}

The mstatus CSR

MIE stands for machine interrupt enable

RISC-V privileged spec

The mie CSR (not mstatus.MIE)

MTIE stands for machine timer interrupt enable

RISC-V privileged spec

