Week 4.b

CS6640

01/30 2026
https://naizhengtan.github.io/26spring/

YZ/l. egos-2k+ booting process
O 2. RISC-V assembly in c (/Sw)
O 3. Timer interrupt [30 omiu)

Q: why did a process finish already?

Booting

* in earth/boot.c

"=r" (core id)) do?éff;/

Q: what does asm("csrr %0, mhartid"

{g)in grass/init.c &

Q: Does it work to directly jump to APP_ENTRY? (instead of using 'mret')
<@

* in sys_shell.c

el ”~
[answering the first question] o - C?C%

handout_w04a copy
Cs6640, Week 04a

1. egos architecture

[..]
2. egos-2k+ booting process I

———————— Simulate on QEMU-RISCV --—-———--—
Wsystem—riscv32 -M virt -s 4 -m 8M -bios tools/egos.bin -nographic
-drive if=pflash, formatsraw,unit=1,file=tools/qemuROM.bin
-device sdhci-pci,addr=0x1 —
-device sd-card,drive=MMC
-drive if=none,file=tools/disk.img,£&rmet=raw, id=MMC
CRITICAL] --- Booting on QEMU with ———
[SUCCESS] Finished initializing the t®y=and disk devices
[INFO] Use direct mode and put the address of the trap_entry into mtvec
[SUCCESS] Finished initializing the MMU, timer and interrupts
[SUCCESS] Enter the grass layer

12 INFO] Load kernel process #1:_sys _process
13 [INFO] Load 0x4400 bytes to OXSJZUUE;EW

1 [INFO] Load 0x510 bytes to 0x80208000

15 SUCCESS] Enter kernel process GPID PROCESS
16 [INFO] Load kernel process #2: s terminal
17 [INFO] Load 0x3660 bytes to OXB-E)EZKOTTUTW__~
18 [INFO] Load 0x274 bytes to 0x80208000

19 [SUCCESS] Enter kernel process GPID TERMINAL
20 INFO] sys_process receives: Finish GPID TERMWIAL initializAtion
21 INFO] Load kernel process #3; sys file

22 INFO] Load 0x5040 bytes to 0x80200000

23 [INFO] Load 0x9c4 bytes to 0x80208000 <E;___
24 [SUCCESS] Enter kernel process GPID FILE

25 [INFO] sys_process receives: Finish GPID_FILE i ialization
26 [INFO] Load kernel process #4: sys_shell

27 [INFO] Load 0Ox4da4 bytes to 0%80

28 [INFO] Load 0x89c

29 [CRITICAL] Welcopgfe to the egos-2k+ shell!

30 - /home/cs6640 %

Shel(4
T pATH
-//L’//\‘

1/30/26, 11:39 AM

Page 1 of 2

handout_w04a copy

3. egos-2k+ booting process II

Dxleo4 3 Coras FPane
L9 CPU jmps to 0x80000000
|
+-> earth/boot.s:bootiloaderé_/>
|
+-> earth/boot.c:boot

HW it
\

+-> grass/init.c:grass_entry

+-> grass.c:main
|
+-> ['mret' to APPS_ENTRY]
I
+-> apps/system/sys_proc.c:main
|
|
+-> apps/system/sys_shell.c:main
|

+-> [your program]

1/30/26, 11:39 AM

Page 2 of 2

handout_w04b Cheng Tan, 0S| 1/29/26, 10:08 PM

OSI Weekd.b

1. Background: RISC-V assembly II

Assembler instructions with C expression operands:
() b, <)
asm(Template : OutputOperands : InputOperands) <:

— —_—

a) Template: a string that is the template for the assembler code.

asm("1lw ra,12(sp)"); Feiibrﬂ. 0,

asm("ret");

b) OutputOperands: the C variables modified by the instructions
in the Template.

void *sp;
asm("mv %0, sp" : "=r"(sp));

c) InputOperands: C expressions read by the instructions
in the Template.

void *sp g4yoid*)0x803fffcO;

Notn

asm("mv sp,%0" ;E-"r"(sp));
/
(G

[read more: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html]

Page 1 of 2

handout_w04b Cheng Tan, 0S|
2. Timer interrupt handler
void handler () {

CRITICAL ("Got a timer interrupt!");
// (4) reset timer

int main() {
CRITICAL("This is a simple timer example");
// (1) register handler() as interrupt handler
// (2) set a timer

// (3) enable timer interrupt

while (1) ;

1/29/26, 10:08 PM

Page 2 of 2

CPU .

Q: if you were a CPU designer, how would you (A)'AS"L/“C{'""’“‘(
like to define the interrupt interface? Qg)reﬁff—#crs

(C)Wuval— W(”//’?ﬂeg
Al

B ‘“' Timer interrupts

[borrowed from Yunhao’s
CS 4411/5411: Practicum in Operating Systems, 22fall]

CPU view: Core-local Inte t (CLINT)
[NtéemmL
e a \

[A B 4 >
| L

(RS nACkIE w 777K
S| hamdler € 74 E31
\ __——" " ARISC-Vcore

Figure 4 of Sifive FE310 manual

achine Software Interrupt—p
Mh e Timer It rupt——

A programmer’s view

void handler() {
printf("Got a timer interrupt!");
// (4) reset timer

h

int main() {
// (1) register interrupt handler <=
// (2) set a timer
// (3) enable timer interrupt

while(1);

The mtvec CSR

bit31 bit2 bit1 bit0

BASE MODE

Value Name Description
0 | Direct | All exceptions set pc to BASE.
1 | Vectored | Asynchronous interrupts set pc to BASE+4xcause.
>2 — Reserved

Table 3.5: Encoding of mtvec MODE field.

RISC-V privileged spec

A programmer’s view

void handler() {
printf("Got a timer interrupt!");
// (4) reset timer

h

int main() {
// (1) register interrupt handler
// (2) set a timer {-
// (3) enable timer interrupt

while(1);

The mtime and mtimecmp CSRs

CLINT A ti_mer interrupt is
triggered when

mtime > mtimecmp E31
A RISC-V core

Machine time (mtime)

_ Machine Software Interrupt—
Machine Timer Interrupt——p|

Sifive FE310 manual

CLINT CSRs are memory-mapped

mtimecmp_set()
writes 8 bytes to

mtime_get()
reads 8 bytes from

>

>

Address | Width | Attr. Description
0x2000000 4B RW | msip for hart O
Ox2004008 Reserved
OX200bff7
0x2004000 8B RW | mtimecmp for hart O
Ox2004008 Reserved
OX200bff7
Ox200bff8 8B RW | mtime
Ox200c000 Reserved

Sifive FE310 manual

A programmer’s view

void handler() {
printf("Got a timer interrupt!");
// (4) reset timer

h

int main() {
// (1) register interrupt handler
// (2) set a timer
// (3) enable timer interrupt <z

while(1);

The mstatus CSR

31 30 23 22 21 20 19 18 17

SD WPRI TSR | TW | TVM | MXR | SUM | MPRV

1 8 1 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XS[1:0] | FS[1:0] | MPP[1:0] | WPRI | SPP | MPIE | WPRI | SPIE | UPIE | MIE | WPRI | SIE | UIE
2 2 2 2 1 1 1 1 1 1 1 1 1

MIE stands for machine interrupt enable

RISC-V privileged spec

The mie CSR (not mstatus .MIE)

XLEN-1 12

11

10

8

7

2

1

WPRI

MEIE

WPRI

SEIE

UEIE

MTIE

WPRI

STIE

UTIE

MSIE

WPRI

SSIE

USIE

XLEN-12

1

1

1

1

1

RISC-V privileged spec

1

MTIE stands for machine timer interrupt enable

1

