
Week 5.a
CS6640
02/03 2023
https://naizhengtan.github.io/26spring/

1. Interrupt handler in egos-2k+
2. Review: OS scheduling
3. Processes in egos-2k+
4. Kernel scheduler

CSR
B B B

1 register handler
me

2 enable timer inter
mms

C Mcanse
mtvec3 set times
mtime

Fmtimecmpm
timpmtimecap.gg

Interrupts and Control Status
Registers (CSRs)

[borrowed from Yunhao’s
CS 4411/5411: Practicum in Operating Systems, 22fall]

The mtvec CSR

BASE MODE

bit1 bit0bit2bit31

RISC-V privileged spec

The mstatus CSR

MIE stands for machine interrupt enable

RISC-V privileged spec

The mie CSR (not mstatus.MIE)

MTIE stands for machine timer interrupt enable

RISC-V privileged spec

Next…

• interrupts beyond CLINT (e.g., timer interrupts)

• RISC-V fine-grained control of interrupts

• how to know which interrupt is triggered?

Platform Interrupt Controller (PLIC)

A RISC-V core

PLIC 3 types of
interrupts

Sifive FE310 manual

CLIC

mie provides fine-grained control

MTIE: machine timer interrupt enable

MEIE: machine external interrupt enable MSIE: machine software interrupt enable

Timer is interrupt #7

Interrupts

Exceptions

Imcau

Jescal

keyboard

System calls?

Interrupts

Exceptions

Review: scheduling

 exit (iv)
 [PROC_LOADING] +-------->[PROC_UNUSED]
 | (iii) interrupt |
 +->[PROC_READY/PROC_RUNNABLE] <------ [PROC_RUNNING]
 ^ ------> |
 syscall msg \ proc_yeild() |
 or wake up (ii) \ |
 \ /
 [PROC_PENDING_SYSCALL/ <-/ syscall or sleep (i)
 PROC_SLEEPING]

* turnaround time

* waiting/response/output time

* CPU time

Mmode P

EET
B

trap interrupt
exception

ÉfIay pid Syscall

71T schedulingalso MLFQ
FCFS
roundrobin
banker'salgo

interrupt

cpuA1kaemÉ
Kobe

ie

process

t.EEeeimiax sit
FITS

Page 1 of 2

handout_w05a 2/3/26, 2:19 AM

1. Machine-mode exception CSRs

 a) mstatus
 Machine Status, holds the global interrupt enable, along
 with a plethora of other state.

 b) mie
 Machine Interrupt Enable, lists which interrupts the processor
 can take and which it must ignore

 c) mcause
 Machine Exception Cause, indicates which exception occurred

 d) mtvec
 Machine Trap Vector, holds the address the processor jumps to
 when an exception occurs

 e) mepc
 Machine Exception PC, points to the instruction where the
 exception occurred

 f) mtval
 Machine Trap Value, holds additional trap information: the
 faulting address for address exceptions, the instruction itself
 for illegal instruction exceptions, and zero for other exceptions

 g) mip
 Machine Interrupt Pending, lists the interrupts currently pending

2. egos-2k+ process management

 a) process control block (PCB)

 [grass/process.h]

 struct process {
 int pid;
 struct syscall syscall;
 enum proc_status status;
 uint mepc, saved_registers[32];

 // scheduling attributes
 union {
 unsigned char chars[64];
 unsigned int ints[16];
 float floats[16];
 unsigned long long longlongs[8];
 double doubles[8];
 } schd_attr;
 };

Cheng Tan, OSI

Page 2 of 2

handout_w05a 2/3/26, 2:19 AM

 b) global process data structures

 [grass/kernel.c]

 uint core_in_kernel;
 uint core_to_proc_idx[NCORES];
 struct process proc_set[MAX_NPROCESS + 1];
 /* proc_set[0] is a place holder for idle cores. */

 [grass/process.h]

 #define curr_proc_idx (core_to_proc_idx[core_in_kernel])
 #define curr_pid (proc_set[curr_proc_idx].pid)
 #define curr_status (proc_set[curr_proc_idx].status)
 #define curr_saved (proc_set[curr_proc_idx].saved_registers)

 c) process life cycle

 [grass/scheduler.c]

 state-transition callback functions:

 * proc_on_arrive(int pid): when pid is created

 * proc_on_sched_in(int pid) when pid is scheduled to run

 * proc_on_sched_out(int pid) when pid is descheduled

 * proc_on_stop(int pid): when pid is destroyed

 a process's life cycle:

 proc_on_arrive() ->
 proc_on_sched_in() -> [running] -> proc_on_sched_out() -> [others] ->
 proc_on_sched_in() -> [running] -> proc_on_sched_out() -> [others] ->
 ...
 -> proce_on_stop()

Cheng Tan, OSI

g
Pathfrocides

I
6413

E ftpFff HE

* Calculating scheduling metrics

 Q: how to calculate turnaround time?

 Q: how to calculate response time?

 Q: how to calculate CPU time?

prosonstop

turnaroundtime f shfnga.ua
ingP

ouane

u th the arrive
1st sad inKernel scheduler MLFQ

