Week 5.b

CS6640

02/05 2026
https://naizhengtan.github.io/26spring/

. kernel ~= three handlers
. egos syscall implementation
. egos exception handling

1000
I W N -

Q: What are the two primary functions of an operating system?

[vajhg re$

2 PVOV((U(((% Qbﬁ
Fieu—
Laﬁ'(' fome - Pﬁ) (256 ‘+ gw"‘{"’} (l/uermfalpé/

[PcB)

I CpU WM(«HP(@K/VZ(PO

[l welostf ([,

2. ProGss — wachine | memoy —> £l (£ (g vy
(e AeES
NOUEN/IE) —
Ao i{zli Aot i
hp rewfe FFH’: ’
P 4:]

Kernel ~= 3 handlers
(hkfrwfé :
eXCeption M @ [— 7
open
Yol fila ofefendonie Vrend i

CPU view o /b running computer
Tir?g/_ﬁ N rmrﬁime\r Tir?%ar

Application

05 fax
A S P S Thread1: 1/0-bound (zoom)
Kernel \ %“ P ! e Thread2: CPU-bound
\ D ./l (\ i i
Sroc gteld ¢y T ¢¥ol (matrix computation)
\ all for System call for
network send network receive
Network card Network card
interrupt: send interrupt: receive

completes packet

. Coclo
interrupts //7

: How does a CPU know what to execute when an interrupt is triggered?

- CIR
Mtye C

: How does the kernel know which interrupt has been triggered?

e Cans €

: After handling interrupts, where does the CPU jump to?

Mye+

L) PC = mepc Kcsk)

==l

When fl/\feme mepc = PCfor app

vestove CfX of PPps

Cheng Tan, 0SI

CS6640 Week 05b

1. egos-2k+ syscall workflow

sys_send/rec syscall.c)

3

' m D{-I-Luwel
+-> |trap (syscall.?)\ u
USER SPACE

———— [trap] === """ | ———=
[mWecil; KERNEL
+-> trap entry (kernel.s) @
[switch to kernel stack] [switch to user aCk]
[save context to stack] [restore context]
| I
+-> kernel_entry (kernel.c) [ret]
[context: stack=>PCB] [context: PCB=>stack]

|
. m_entry? excp_entry?)
|
+-> proc_try syscall (ipc.c)

+-> proc_try send/recv (ipc.c)
+-> sys_yield (scheduler.c)

Fom———— >[schedule next

chengTan, 081 MdtUe C m

2. Trap t‘o/eﬁl (grass/kernel.s)

trap_entry:
/*
* A. switch to the kernel stack.
* B. save all the registers on the kernel stack.
* C. call kernel entry().
* D. restore all the registers.
* E. switch back to the process stack.
* F. mret, returning to the process context. */

/* A */
- csrw mscratch,
1i sp, OXSOZOOOOO él: ke,mz[5"(“ck

/‘k B *
addi sp, sp, -128 /* now, sp == EGOS_STACK_TOP-32%*4 */
sw a0, 0 (sp)

Saur g

Comf sw a7, 28(sp)
sw tO0, 32 (sp)
S e
sw t6, 56 (sp)
sw s0, 60 (sp)
sw sl1l1l, 104 (sp)
sw ra, 108 (sp)
sw gp, 112(sp)
sw tp, 116 (sp)
07 mddératch /* Step-A has written sp to mscratch */
120 (sp) /* t0 holds the value of the old sp before trap_entry */

/* C */ l ’

call kernel entry FQVWL(.C T’ 5 b-rs
—_— .

- e~ !

1w a0, 0 (sp)

1w a7, 28(sp)
lw tO0, 32 (sp)

> 1w t6,

56 (sp)
1w s0, 60(sp)
lw s1, 64 (sp)

1w s11, 104 (sp)

lw ra, 108(sp)
1w gp, 112(sp)
1w tp, 116 (sp)
/* E */

> 1w sp, [120(sp)

_L/k/
‘ mret S

Cheng Tan, 0SI

3. Trap reason table "V‘-CQMSQ [%Z’L".P)

Interrupt | Exception Code | Description

Reserved

Supervisor software interrupt
Reserved

Machine software interrupt
Reserved

Supervisor timer interrupt
Reserved

Machine timer interrupt
Reserved

Supervisor external interrupt
Reserved

Machine external interrupt
Reserved

Designated for platform use

© 0~ O UL ix|W N~ O

Instruction address misaligned
Instruction access fault/) H '{W""b"@{
Illegal instruction

Breakpoint \ * X ﬂ)

Load address misaligned Vo g‘&%

Load access fault =— X P—H’
Store/AMO address misaligned L
Store/AMO access fault
Environment call from]U-mode
Environment call fro
Reserved
Environment call fro
Instruction page fault
Load page fault ——=
Reserved > [a[’s'
Store/AMO page fault
1623 | Reserved
24-31 | Designated for custom use
32-47 | Reserved
48-63 | Designated for custom use

>64 | Reserved

m

OO0 0000000000000 O HFHERER[HEFE = R H ke

| (TR

c) syscalls

Ql: How does an application trap into the kernel?
(¢
thﬁW[ﬂv/ Oxception

Q2: How does the kernel determine the operation requested by the
application?
That is, what information is required to handle a system call?

g W/Ve cv

Q03: Where is this information stored?

_ Mf‘)wg
- gyhncz
_ Wwﬂ"”g

¢
(

(

(UMQXY-kM&M/ﬂ)

