
Week 5.b
CS6640
02/05 2026
https://naizhengtan.github.io/26spring/

□ 1. kernel ~= three handlers
□ 2. egos syscall implementation
□ 3. egos exception handling

 Q: What are the two primary functions of an operating system?

Kernel ~= 3 handlers

1 managing res

2 providing abs

Lasttime Process scheduling interpt
PCB

1 CPU multiplexing

2 process machine
theming Virtualmemory labs

sk
file Eyes

EE.IE iTEiiIii
0 000.0

interrupt

exception Elt Jet.at
eayscallfileopenreadwrite

socket

Thread1: I/O-bound (zoom)
Thread2: CPU-bound

(matrix computation)

Application

Kernel

Timer Timer

System call for
network send

Network card
interrupt: send

completes

System call for
network receive

Timer

Network card
interrupt: receive

packet

. . .

CPU view of a running computer
Intimesmtimempf

temptQ

amIaysan

Ostax

prosy
Oprocyields
A

a) interrupts

Q: How does a CPU know what to execute when an interrupt is triggered?

Q: How does the kernel know which interrupt has been triggered?

Q: After handling interrupts, where does the CPU jump to?

code

Mtvec
CSR

mcause

1ᵗF neg SR

when interrupted meps PC forapp
ppp2

e El gaff Dori
V5EFFIEctx of Pa

CS6640 Week 05b

1. egos-2k+ syscall workflow

sys_send/recv (syscall.c)
 | ^
 +-> trap (syscall.c) [ret]
 | USER SPACE |
-----[trap]---|----
 | KERNEL |
 +-> trap_entry (kernel.s) [mret]
 [switch to kernel stack] [switch to user stack]
 [save context to stack] [restore context]
 | |
 +-> kernel_entry (kernel.c) [ret]
 [context: stack=>PCB] [context: PCB=>stack]
 | |
 ... (intr_entry? excp_entry?) |
 | |
 +-> proc_try_syscall (ipc.c) [ret]
 | |
 +-> proc_try_send/recv (ipc.c) |
 +-> sys_yield (scheduler.c) [ret]
 | |
 +------>[schedule next proc]----+

	

Cheng Tan, OSI

2. Trap to kernel (grass/kernel.s)

trap_entry:

 /*
 * A. switch to the kernel stack.
 * B. save all the registers on the kernel stack.
 * C. call kernel_entry().
 * D. restore all the registers.
 * E. switch back to the process stack.
 * F. mret, returning to the process context. */

 /* A */
 csrw mscratch, sp
 li sp, 0x80200000

 /* B */
 addi sp, sp, -128 /* now, sp == EGOS_STACK_TOP-32*4 */
 sw a0, 0(sp)
 ...
 sw a7, 28(sp)
 sw t0, 32(sp)
 ...
 sw t6, 56(sp)
 sw s0, 60(sp)
 ...
 sw s11, 104(sp)
 sw ra, 108(sp)
 sw gp, 112(sp)
 sw tp, 116(sp)
 csrr t0, mscratch /* Step-A has written sp to mscratch */
 sw t0, 120(sp) /* t0 holds the value of the old sp before trap_entry */

 /* C */
 call kernel_entry

 /* D */
 lw a0, 0(sp)
 ...
 lw a7, 28(sp)
 lw t0, 32(sp)
 ...
 lw t6, 56(sp)
 lw s0, 60(sp)
 lw s1, 64(sp)
 ...
 lw s11, 104(sp)
 lw ra, 108(sp)
 lw gp, 112(sp)
 lw tp, 116(sp)

 /* E */
 lw sp, 120(sp)

 /* F */
 mret

Cheng Tan, OSI

ftp.nty
Q1 softwareint cjZ men

Interest here
ankkemis.am i

EEFiiiFEf
iii

if
CSRs

mm

fat
tenements

GE

men

b) exceptions

CPU

APP

I aif

3. Trap reason table

Volume II: RISC-V Privileged Architectures V20211203 39

Interrupt Exception Code Description
1 0 Reserved
1 1 Supervisor software interrupt
1 2 Reserved
1 3 Machine software interrupt
1 4 Reserved
1 5 Supervisor timer interrupt
1 6 Reserved
1 7 Machine timer interrupt
1 8 Reserved
1 9 Supervisor external interrupt
1 10 Reserved
1 11 Machine external interrupt
1 12–15 Reserved
1 �16 Designated for platform use
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 16–23 Reserved
0 24–31 Designated for custom use
0 32–47 Reserved
0 48–63 Designated for custom use
0 �64 Reserved

Table 3.6: Machine cause register (mcause) values after trap.

Cheng Tan, OSI

Mcause 32bit

0121808

formed

51 Imsa198g
LaabsUM

c) syscalls

Q1: How does an application trap into the kernel?

Q2: How does the kernel determine the operation requested by the
application?
That is, what information is required to handle a system call?

Q3: Where is this information stored?

open 1aprt.EEi
interrupt exception

send recu

Registers

stack
memory well known

