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. kernel ~= three handlers
. egos syscall implementation
. egos exception handling
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Q: What are the two primary functions of an operating system?
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Kernel ~= 3 handlers
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: How does a CPU know what to execute when an interrupt is triggered?
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: How does the kernel know which interrupt has been triggered?
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: After handling interrupts, where does the CPU jump to?
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1. egos-2k+ syscall workflow

sys_send/rec syscall.c)

3

' m D{-I-Luwel
+-> |trap (syscall.?)\ u
USER SPACE

———— [trap] === """ | ———=
[ mWecil; KERNEL
+-> trap entry (kernel.s) @
[switch to kernel stack] [switch to user aCk]
[save context to stack] [restore context]
| I
+-> kernel_entry (kernel.c) [ret]
[context: stack=>PCB] [context: PCB=>stack]

|
. m_entry? excp_entry?)
|
+-> proc_try syscall (ipc.c)

+-> proc_try send/recv (ipc.c)
+-> sys_yield (scheduler.c)

Fom———— >[schedule next
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2. Trap t‘o/eﬁl (grass/kernel.s)

trap_entry:
/*
* A. switch to the kernel stack.
* B. save all the registers on the kernel stack.
* C. call kernel entry().
* D. restore all the registers.
* E. switch back to the process stack.
* F. mret, returning to the process context. */

/* A */
- csrw mscratch,
1i sp, OXSOZOOOOO él: ke,mz[ 5"(“ck

/‘k B *
addi sp, sp, -128 /* now, sp == EGOS_STACK_TOP-32%*4 */
sw a0, 0 (sp)

Saur g

Comf sw a7, 28(sp)
sw tO0, 32 (sp)
S e
sw t6, 56 (sp)
sw s0, 60 (sp)
sw sl1l1l, 104 (sp)
sw ra, 108 (sp)
sw gp, 112(sp)
sw tp, 116 (sp)
07 mddératch /* Step-A has written sp to mscratch */
120 (sp) /* t0 holds the value of the old sp before trap_entry */

/* C */ l ’

call kernel entry FQVWL(.C T’ 5 b-rs
—_— .
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1w a0, 0 (sp)

1w a7, 28(sp)
lw tO0, 32 (sp)

> 1w t6,

56 (sp)
1w s0, 60(sp)
lw s1, 64 (sp)

1w s11, 104 (sp)

lw ra, 108(sp)
1w gp, 112(sp)
1w tp, 116 (sp)
/* E */

> 1w sp, [120(sp)

_L/k/
‘ mret S
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3. Trap reason table "V‘-CQMSQ [ %Z’L".P)

Interrupt | Exception Code | Description

Reserved

Supervisor software interrupt
Reserved

Machine software interrupt
Reserved

Supervisor timer interrupt
Reserved

Machine timer interrupt
Reserved

Supervisor external interrupt
Reserved

Machine external interrupt
Reserved

Designated for platform use
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Instruction address misaligned
Instruction access fault/) H '{W""b"@{
Illegal instruction

Breakpoint \ * X ﬂ )

Load address misaligned Vo g‘&%

Load access fault =— X P—H’
Store/AMO address misaligned L
Store/AMO access fault
Environment call from]U-mode
Environment call fro
Reserved
Environment call fro
Instruction page fault
Load page fault ——=
Reserved > [a[’s'
Store/AMO page fault
1623 | Reserved
24-31 | Designated for custom use
32-47 | Reserved
48-63 | Designated for custom use

>64 | Reserved
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c) syscalls

Ql: How does an application trap into the kernel?
(¢
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Q2: How does the kernel determine the operation requested by the
application?
That is, what information is required to handle a system call?
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Q03: Where is this information stored?
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