
Characterizing Neural Network Verification for Systems with NN4SYSBENCH

Haoyu He 1 Tianhao Wei 2 Huan Zhang 2 Changliu Liu 2 Cheng Tan 1

Abstract
We present NN4SysBench, a benchmark suite
for neural network verification, comprised of
benchmarks from neural networks for systems (or
NN4Sys). NN4Sys is booming: there are hundreds
of proposals of using neural networks in com-
puter systems—databases, OSes, and networked
systems—that are safety critical. We observe that
NN4Sys has some unique characteristics that to-
day’s neural network verification tools overlooked.
This benchmark aims at bridging the gap between
NN4Sys and NN-verification by tailoring impact-
ful NN4Sys instances to benchmarks that today’s
NN-verification tools can work on.

1. Introduction
Applying deep learning techniques on tasks in computer sys-
tems attracts much attentions recently. There are many pro-
posals to replace system components with neural networks.
We call these, neural networks for systems or NN4Sys.
NN4Sys have been used for database indexes (Kraska et al.,
2018), congestion control (Jay et al., 2019), database query
optimization (Krishnan et al., 2018), memory prefetch-
ing (Hashemi et al., 2018), memory allocator (Maas et al.,
2020), and I/O latency prediction in OS (Hao et al., 2020).

Deploying NN4Sys however faces a challenge in practice;
that is, neural networks are black boxes and may produce un-
predictable outcomes. For example, a neural network based
scheduler may attempt to schedule invalid jobs (Mao et al.,
2016). A learned index may output a faraway data position
for non-existing keys. A learned cardinality estimation may
predict a smaller number for a larger query range.

Meanwhile, debugging and fixing neural networks for cer-
tain behaviors are hardly conceivable thus far. Despite the
challenge, there is a hope: neural network verification (NN-
verification) can provably check if networks satisfy user-

1Khoury College of Computer Sciences, Northeastern Univer-
sity 2Department of Computer Science, CMU. Correspondence to:
Cheng Tan <c.tan@northeastern.edu>.

1 st Workshop on Formal Verification of Machine Learning, Bal-
timore, Maryland, USA. Colocated with ICML 2022. Copyright
2022 by the author(s).

defined specifications. This enables developers to verify if
a trained NN4Sys follows some basic safety properties. In
fact, people have already used NN-verification for examin-
ing desired properties in networked systems (Eliyahu et al.,
2021; Dethise et al., 2021).

Indeed, we believe NN-verification works well with
NN4Sys, for two reasons. First, the network sizes of
NN4Sys are usually small (see also Eliyahu et al. (2021,
Table 1)), which are suitable for expensive verification. Sec-
ond, the specifications of NN4Sys are unambiguous hence
are straightforward to develop, owing to the rigorous se-
mantics of systems. Thus, we argue that NN4Sys should
couple with NN-verification whenever it can, in order to
build readily deployable networks in practice.

Though promising, using verification in NN4Sys today is
limited. To see why, we studied two NN4Sys applications—
database learned indexes (Kraska et al., 2018) and cardi-
nality estimation (Kipf et al., 2018)—and summarize the
difficulties of applying today’s NN-verification to NN4Sys.
In particular, we want to illustrate the unique characteris-
tics of NN4Sys and highlight some challenges for today’s
NN-verification. We brief the four characteristics that we
observe. (This is by no means a comprehensive list.)

• Small number of input dimensions. Compared with vi-
sion models with high-dimensional inputs (in thousands),
both NN4Sys cases we studied have fewer than tens of in-
put dimensions that can be perturbed. This suggests that,
considering a single specification entry (an input-output
constraint), NN4Sys instances are easy to verify.

• Large number of specification entries. We observe that
NN4Sys usually has many specification entries. This is
because safety properties need to cover the entire input
space to be comprehensive. For example, the learned
index in our benchmark has 150K entries (§3.1).

• Hierarchical models. NN4Sys sometimes uses multiple
neural networks in a hierarchical structure which together
serve one task (an example is Figure 1). An end-to-end
verification ideally can check them in one pass.

• Monotonicity specification. Beyond normal specifica-
tions of specifying input-output constraints, NN4Sys also
requires monotonicity properties. As an example, learned
cardinality estimation requires results to be monotoni-
cally increasing while query ranges increase (§3.2).

Characterizing Neural Network Verification for Systems with NN4SYSBENCH

Some characteristics mentioned are not well supported by
today’s verification tools. To bridge NN4Sys and NN-
verification, we propose a benchmark suite, NN4SysBench.
NN4SysBench is designed to include impactful NN4Sys
that already exists, plus specifications that we create. So far,
we have two benchmarks, learned index (§3.1) and cardinal-
ity estimation (§3.2).

NN4SysBench is tailored for today’s verification tools.
Benchmark models and specifications are customized to fol-
low verification conventions and assumptions. For example,
in learned index, we use a single neural network to replace
the original Recursive Model Index that combines multiple
networks (§3.1); in learned cardinality estimation, we de-
velop a dual-model to simulate monotonicity comparison
between two inferences (§3.2). We wish that NN4SysBench
can demonstrate the power of NN-verification, meanwhile
also illustrates how NN4Sys works, which may hint better
ways for verifying NN4Sys.

2. Background and related work
2.1. Neural networks for systems

People introduce a broad range of neural networks for com-
puter systems. This paper studies two of them: database
learned index (§2.2) and learned cardinality estimation
(§2.3). Learned index was initially proposed by Kraska
et al. (2018), which try to replace classic database indexes
with neural networks. Cardinality estimation (Liu et al.,
2015) is used by database query optimizer to predict sizes of
query results, and Kipf et al. (2018) proposed to use neural
networks for the estimation.

Beyond databases, many NN4Sys proposals exist in other
system areas. For example, neural networks are used for
congestion control (Jay et al., 2019) and datacenter network
traffic optimization (Chen et al., 2018; Salman et al., 2018)
in networked systems. In operating systems, there are sys-
tems using neural networks for predicting I/O latency (Hao
et al., 2020), page prefetching, and job scheduling (Qiu
et al., 2021). In particular, reinforcement learning is popular
to train NN4Sys (Haj-Ali et al., 2019; Mao et al., 2019).

2.2. Learned index

Indexes are common data structures in systems, which en-
able fast data accesses. For example, a classic index data
structure is B-Tree. It allows database users to quickly find
data stored on the underlying storage. Learned index struc-
ture (Kraska et al., 2018) is an alternative index structure
that uses neural networks for better lookup time and smaller
memory footprints than B-Tree. In databases, index’s in-
puts are database keys, and the outputs are data positions
stored on disk. The data are sorted by keys. Learned in-
dexes (namely neural networks) should learn the key dis-

tribution of the databases to give accurate predictions of
data positions. Recursive Model Index (RMI) is the first
learned index structure (Kraska et al., 2018) that we elabo-
rate in section 3.1. Also, there is a line of work (Ding et al.,
2020b;a; Tang et al., 2020; Marcus et al., 2020) to optimize
the performance of learned indexes and extend learned in-
dexes to different environments, for example, multi-core
machines (Tang et al., 2020).

2.3. Learned cardinality estimation

Cardinality estimation (CE) plays a significant role in query
optimization of database systems. It aims at estimating the
size of sub-plans of each query and guiding the optimizer
to select the optimal join operations. Performance of car-
dinality estimation has great impact on the quality of the
generated query plans. With the proliferation of widespread
applications of neural networks, recent works (Wang et al.,
2020) try to apply machine learning methods to estimate the
cardinality of queries. Kipf et al. (2018) proposed a multi-
set MLP-based architecture (MSCN) to frame the cardinality
estimation problem as a typical deep learning task. Despite
the promising results, learned cardinality has a drawback
that it neglects the internal semantic logic of each query as
a result of encoding queries into numerical vectors. Our CE
benchmark is built upon this. Multiple other proposals also
use neural networks for cardinality estimation (Wang et al.,
2020).

2.4. Benchmarks in verification

Benchmarking in verification has developed in response to
the empirical research within different fields, which is in fa-
vor of benchmarks that are diverse in structure and difficulty,
and are representatives of the use cases. In diverse problem
settings, people made great efforts to build benchmarks for
hardware (Gupta, 1992), software (D’Silva et al., 2008),
and constraints (Gent & Walsh, 1999). These well curated
benchmarks have been invaluable resources to advance a
research community.

Compared to these developed fields, neural network veri-
fication is a new field under development, and verification
competitions have been positive driven force to develop
high-quality benchmarks. In Bak et al. (2021), 9 bench-
marks were proposed and most of them are designed to fit
in the field of computer vision. Xu et al. (2020a) devised a
benchmark generator on various tasks with networks, most
of which are composed of fully-connected layers. Our work
is different from these literatures in that we concentrate in
the field of neural network verification for systems. Our
benchmark provides supplementary tasks and architectures
to the verification community, and shows the potential to
advance research in neural network verification.

Characterizing Neural Network Verification for Systems with NN4SYSBENCH

Model 1.1

Model 2.1 Model 2.2 Model 2.3 ...

Key

Position

St
ag

e
1

St
ag

e
2

Figure 1. A two-stage Recursive Model Index (RMI). In this ex-
ample, this RMI takes a “Key” as an input, chooses “Model 1.1”
and “Model 2.1” for prediction, and finally produces the “Position”
which is supposed to be the data location indexed by “Key”.

3. NN4SysBench
In this section, we introduce the two benchmarks in
NN4SysBench: learned index (§3.1) and learned cardinality
estimation (§3.2). We summarize their characteristics in sec-
tion 3.3, and further elaborate how we choose benchmark
parameters in section 3.4.

3.1. Learned index

Learned indexes have been extensively studied by using dif-
ferent ML approaches (Marcus et al., 2020). Below we in-
troduce the first learned index using neural networks, named
Recursive Model Index (RMI), which is depicted in Figure 1.
RMI has multiple stages and each stage has one or multiple
models (neural networks). During a lookup, RMI picks one
model in each stage to run; models in upper stages (starting
from stage 1) decide the model in the next stage; and a
final stage model predicts the data position for the queried
key. As the best practice (Kraska et al., 2018), people use
two-stage RMIs.

3.1.1. SPECIFICATION

The correctness property of a RMI is to ensure that models
always produce data positions within a certain error-bound,
so that RMIs can always find existing data in the database (a
required property for any index structures). Original RMIs
achieve this by evaluating all existing keys on the trained
neural networks, and replace those inaccurate ones with tra-
ditional B-Trees. But, this approach does not provide guar-
antees for non-existing keys—the predicted data positions
can be arbitrary. As discussed in the RMI paper (Kraska
et al., 2018, §3.4), original RMIs can handle non-existing
keys by forcing all neural network models to be monotonic
or using exponential search techniques, which requires extra
effort.

In NN4SysBench, the specifications for learned index re-
quire that the neural networks predict with bounded errors
for all keys (including non-existing keys). This applies to
range queries whose upper/lower bound of the range might

be non-existing keys. In particular, one specification entry
reads as follows,
∀k ∈ [K[i],K[i+1]], F (k) ∈ [DB(K[i])−ε,DB(K[i+1])+ε]

where k is a key, K is the sorted list of existing keys, F (·)
is the learned index, DB is the database key-position map-
ping (ground truth), and ε is the error bound. The number
of specification entries equals the number of keys in the
database.

3.1.2. NETWORK

Vanilla RMIs cannot be verified as a whole by today’s ver-
ification tools because the tools assume that verification
only applies to a single neural network. One attempt is
to merge models from all stages into a gigantic model by
adding gluing neurons and manipulating their weights to
simulate RMIs (Wei et al., 2021). This is a benchmark in
VNN-COMP’21 (Bak et al., 2021). However, it suffers from
numerical instability problems during verification due to the
manipulated neurons.

In NN4SysBench, we train a single neural network for
learned index benchmark, which is much more expensive
than RMIs as discussed by Kraska et al. (2018, §2.3). In par-
ticular, we borrow training approaches from Ouroboros (Tan
et al., 2021) to train a single neural network that learns very
well in a 150K-key lognormal dataset. NN4SysBench has
two learned index sizes. One is a four-layer fully connected
network with 128 neurons each layer; the other is a six-layer
network with a width of 128.

3.2. Learned cardinality estimation

Cardinality Estimation (CE) predicts the number of return
rows from a database (referred as the cardinality) given
a SQL query or subquery. Consider a relation R with n
attributes {A1, A2, · · · , An}, and a query q over R with a
conjunctive of d predicates. The cardinality of query q over
a this relation R can be represented as:

SELECT COUNT(*) FROM q,

q := R WHERE θ1 AND · · · θd,
where θi(i ∈ [1, d]) can be joins likeA1 = A3 or predicates
like A1 = a, A2 ≥ b, a, b ∈ R. The goal of a cardinality
estimation function F (·) is to approximate the value of CE
given a query. Usually, learned cardinality methods apply
neural networks to parameterize F and the input of F is
numerical vectors featurized from q.

3.2.1. SPECIFICATION

To build specifications for learned cardinality estimation, we
first introduce properties that correlate with the task seman-
tics in the specification language. Specifications include:

Characterizing Neural Network Verification for Systems with NN4SYSBENCH

1. F (q) ≤ |R|.

2. F (q) ≥ 0.

3. F (q) ≥ F (q ∧ θi), i ∈ [1, d].

4. F (q1) ≥ F (q2), if q1 and q2 only differ in that they
have unique attributes Ai limited in overlapped ranges
such that θq1 := Ai ≤ a, θq2 := Ai ≤ b.

5. n ≤ F (q) ≤ m, where q = ¬θq1 ∧ q2, q1 and q2
only differ in that they have unique attributes Ai lim-
ited in overlapped ranges such that θq1 := Ai ≤ a,
θq2 := Ai ≤ b. The cardinality of q1 and q2 is n, m,
respectively.

The first two properties require the prediction to be no less
than 0 and no greater than the number of total data pieces in
a relation, which are very basic rules that a cardinality esti-
mator should follow. Although these two properties seem
trivial, they are necessary for verifying learned cardinality
estimator because of the black-box characteristics of deep
neural networks. Property 3 follows a natural intuition that
if we add one more predicate to a query, then the cardinality
of this query should be less than the original query. To better
explain the proposed specifications, we illustrate properties
4 and 5 with two examples in the following. Assume

q1 = FROM table t WHERE t.year < 2015, CE(q1) = n,

q2 = FROM table t WHERE t.year < 2020, CE(q2) = m,

It is logically reasonable that n should be no more thanm be-
cause there should be no less than 0 data piece between year
2015 and 2020. Therefore, we can build a specification that
F (q1) ≥ F (q2), leading to property 4. Note that construct-
ing specifications of property 4 does not need the true value
of cardinality to a query because it verifies the monotonicity
of model predictions. To the best of our knowledge, our
benchmark is the first to concern the monotonicity of neural
networks and we will describe how we implement this in
Section 3.2.2. For property 5, we can construct another
specification, where the pre-condition requires the value
of t.year to be in the range of [2015, 2020], and the post-
condition limits the prediction to be in the range of [n,m].
These specifications are different from previous works in
that they range the inputs of the networks following the task
semantics and practical logical rules, while previous works
performed random perturbation (e.g. adding noise to an
image).

Specification generation. We leverage the mechanism in
Kipf et al. (2018) to feature every query into a vector that
includes binary value and numerical value. Represent a
query q as a collection (Tq, Jq, Pq) of a set of tables Tq ⊂ T ,
a set of joins Jq ⊂ J , and a set of predicates Pq ⊂ P . For

2-layer FF2-layer FF 2-layer FF

2-layer FF

Tables Joins Pr edicates

Car dinal i t y
Est im at ion

Figure 2. A multi-set networks with three separate modules for
embedding tables, joins, and predicates as Et, Ej , Ep and a final
output module that take the concatenation of Et, Ej , Ep as input.

each table t and join j, we encode them as a unique one-
hot vector. For predicates in the form of an attribute in a
value range (att, op, val), att and op are featurized as one-
hot vector and the val is normalized as a numerical value
between 0 and 1. Given a set of SQL queries with the real
cardinality that are used to train cardinality estimators, we
can perform automatic generation following our proposed
properties in Section 3.2.1 by tuning the featured vector.

In order to support monotonicity specification (the property
4), we implement a dual-model architecture that simulates
two network inferences at the same time (details in §3.2.2).
With the dual-model, a monotonicity specification can be
expressed as, for example: (except for year, other properties
of q1 and q2 are the same.)

q1.year < 2015 < q2.year =⇒ y1 < y2

where q1.year and q2.year are two inputs of the same in-
ference to the dual-model; y1 = F (q1) and y2 = F (q2) are
the outputs of the same dual-model inference.

3.2.2. NETWORK

We use the representative MSCN (Kipf et al., 2018) architec-
ture as the estimator of our learned cardinality task. MSCN
is a multi-set feed-forward network (FFN) where tables,
joins, and predicates are represented as separate modules,
comprised of one two-layer neural network per set element
with concatenation operations. This architecture (See Fig-
ure 2) itself is appropriate for advancing the development
of today’s verification tools because some of them do not
support the concatenation operation.

Dual-model for monotonicity. To enable monotonicity ver-
ification for today’s tools, we duplicate the trained MSCN
model and connect the two models side-by-side as a sin-
gle new model, called a dual-model (See Figure 3). The
dual-model’s inputs and outputs are doubled compared to
the original MSCN. We use a split operator to split inputs
into two and send them to the two identical “internal mod-
els”: the first half of the inputs go to the first model and

Characterizing Neural Network Verification for Systems with NN4SYSBENCH

2-layer FF2-layer FF 2-layer FF

2-layer FF

Tables 1 Joins 1 Pr edicates 1

2-layer FF2-layer FF 2-layer FF

2-layer FF

Tables 2 Joins 2 Pr edicates 2

CE di f fer ence

Figure 3. The dual model do parallel inferences on a couple of
inputs and produces the difference of predictions.

the second half to the second model. Dual-model’s output
is the difference between the estimated cardinality for the
first-half inputs, and the second-half inputs.

3.3. Benchmark characteristics

Different from existing verification benchmarks like MNIST,
CIFAR10, and ACAS Xu (Katz et al., 2017), NN4SysBench
has four unique characteristics. First, NN4Sys has a small
number of input dimensions; this applies to both studied
cases. Learned index has a single input dimension and
learned cardinality estimation has less than ten inputs that
could be perturbed (others are one-hot encoding). Compared
with thousands of input dimensions in vision models, these
numbers are tiny. This is because each input dimension in
NN4Sys usually represents a factor in systems and there are
not many meaningful factors in practice.

Second, NN4SysBench specifications have many entries,
which appears in both studied cases. The number of specifi-
cation entries in learned index is 150K because that is the
number of keys in the database. Similar scenarios occur for
learned cardinality estimation. We believe this is broadly
applicable to NN4Sys, which is rooted in having a compre-
hensive specification that covers the entire input space (like
the database key space).

Third, NN4Sys sometimes needs hierarchical structure that
combines multiple models. This happens in the RMI of
learned index (§3.1). In practice, people sometimes train
multiple models and organize them in a certain structure to
achieve better accuracy or shorter training time. The idea
is that each model only learns a small portion of the whole
problem (hence is easier to train), and people can cherry-
pick models that behave well and discard the ones that do
not. So far, NN-verification tools lack the ability to verify
multiple models end-to-end.

Finally, monotonicity is a desired property that learned car-
dinality estimation needs, but hasn’t been well supported.
As mentioned (§3.2.1), the property 4 in cardinality esti-
mation specifications is the monotonicity requirement. It
says that a query with a larger range should return the same
or more number of rows. Monotonicity is a common case
in NN4Sys, for example, I/O latency prediction in which

latencies should monotonically increase regarding queue
lengths. However, verifying monotonicity is not supported
by today’s verification tools.

3.4. Benchmark parameters

To construct a difficulty-adaptable benchmark, we apply
several parameters to tune the difficulty. General parameters
for both tasks in NN4SysBench include: (1) the depth and
width of neural networks, (2) the number of entries in specifi-
cations, (3) the ratio of safe and unsafe specifications. There
is an extra parameter for learned cardinality estimation, (4)
if verifying monotonicity specifications for dual-models. In
NN4SysBench, we provide multiple versions of neural net-
works for different difficulties (tuning parameter (1) and (4)).
We also generate a large set of specifications (in hundreds)
with different numbers of entries (ranging from 1 to hun-
dreds of thousands) to vary difficulties (tuning parameters
(2), (3), and (4)).

4. Experiments
In this section, we experiment NN4SysBench with the state-
of-the-art neural network verifier, and show its performance
on different difficulties.

Setup. We run all our experiments on a g5.4xlarge EC2
machine, with 16 vCPUs, 64GB memory, and an NVIDIA
A10G GPU. We use α, β-CROWN (Zhang et al., 2018; Xu
et al., 2020b; Salman et al., 2019; Xu et al., 2021; Wang
et al., 2021) as our verifier, which is the winner of VN-
NCOMP’21 (Bak et al., 2021).

4.1. Learned index

For learned index, we study how the depth of neural net-
works and the number of specification entries (namely, tun-
ing parameter (1) and (2) in §3.4) may vary verification
time. We run the verifier on two feed-forward networks of
the same width (of 128) but with different depths: one has
four layers; the other has six layers. The number of speci-
fication entries range from 1 to 800. All the specification
entries are verified safe. Figure 4 shows the results. We
learn that the verification time grows linearly regarding the
growth of specification entries. This is expected because the
current verifier checks one entry at a time. Also, the deeper
the network, the slower the verification. But, the verification
time does not growing proportionally regarding the depth
of a neural network: verifying the deeper 6-layer network
costs less than 1.5× of the shallower 4-layer network. Our
hypothesis is that because learned indexes are easy to verify,
the setup overheads (which are stable for all networks) are
non-negligible, hence the runtime difference is not as large.

Characterizing Neural Network Verification for Systems with NN4SYSBENCH

Figure 4. Verification time on specifications that have different
number of entries. For the purpose of experiments, we limit the
number of entries to be 800 instead of 150K in our benchmark.

Figure 5. Count of safe and unsafe instances across the four diffi-
culties, verified by α, β-CROWN.

Figure 6. Verification time on specifications of various difficulties.

4.2. Learned cardinality

Based on training data and testing data (i.e. SQL queries)
used in (Kipf et al., 2018), we generate 22384 specifications
following property 1, 2, 3, and 5 of the learned cardinality
(§3.2) and 64864 specifications following property 4. In
this experiment, we tune parameter (1) and (4) described in
Section 3.4 to form specifications in four difficulties (128-
single, 128-dual, 2048-single, 2048-dual), where networks
have different hidden state width 128/2048 and the same
network will be copied as a dual-model when verifying
specifications of property 4.

We use the verification time per instance of specifications
to measure how hard is one instance to the existing verifier,
so as to evaluate the effectiveness of our parameters to tune
the difficulty. According to experimental results demon-
strated in Figure 5, no more than half of the specifications
are safe (i.e., successfully verified) for each group. For
model with either 128 or 2048 dimension, the proportion
of safe instances for monotonicity specifications are higher
than normal specifications. Also, whether the specification
is safe does not show clear correlation with the model size.
Figure 6 reports the distribution of verification time cost by
specifications in the four difficulties. We observe that by
increasing the model size or performing monotonicity veri-
fication raise the verification time, proving the effectiveness
of our benchmark parameters.

5. Future work, discussion, and summary
Future work. We’re working on adding more NN4Sys in-
stances to NN4SysBench, for example, learned schedulers,
I/O latency predictors, and learned memory allocators. We
also plan to include other categories of specifications, and
develop sophisticated specifications that have more struc-
tures than a simple parallel OR. In the near future, we will
conduct a more comprehensive performance analysis of the
existing verification approaches on NN4SysBench.

Hints for NN-verification from NN4Sys. Looking forward,
we believe the following optimizations can significantly
boost neural network verification of NN4Sys. First, batch
verification will help verifying multiple (potentially, many)
specification entries at the same time. Second, it would be
better to have native support for verifying monotonicity than
our dual-model design (§3.2.2). Third, end-to-end veri-
fication of multiple models can substantially improve the
training time of NN4Sys because as learned index shows,
training a RMI is much cheaper than training a single net-
work with the same accuracy (§3.1).

Summary. We present a benchmark suite, NN4SysBench,
with a hope to bridge NN-verification and NN4Sys.
NN4SysBench is designed for today’s verification tools
while hinting at the future verification of NN4Sys.

Characterizing Neural Network Verification for Systems with NN4SYSBENCH

References
Bak, S., Liu, C., and Johnson, T. T. The second international

verification of neural networks competition (vnn-comp
2021): Summary and results. ArXiv, abs/2109.00498,
2021.

Chen, L., Lingys, J., Chen, K., and Liu, F. Auto: Scaling
deep reinforcement learning for datacenter-scale auto-
matic traffic optimization. In Proc. SIGCOMM, 2018.

Dethise, A., Canini, M., and Narodytska, N. Analyzing
Learning-Based Networked Systems with Formal Verifi-
cation. In Proceedings of INFOCOM’21, 2021.

Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y.,
Zhang, H., Chandramouli, B., Gehrke, J., Kossmann, D.,
et al. Alex: an updatable adaptive learned index. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020a.

Ding, J., Nathan, V., Alizadeh, M., and Kraska, T. Tsunami:
A learned multi-dimensional index for correlated data
and skewed workloads. arXiv preprint arXiv:2006.13282,
2020b.

D’Silva, V. V., Kroening, D., and Weissenbacher, G. A
survey of automated techniques for formal software veri-
fication. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 27:1165–1178, 2008.

Eliyahu, T., Kazak, Y., Katz, G., and Schapira, M. Verifying
learning-augmented systems. In Proc. SIGCOMM, 2021.

Gent, I. P. and Walsh, T. Csplib: A benchmark library for
constraints. In Jaffar, J. (ed.), Principles and Practice of
Constraint Programming – CP’99, pp. 480–481, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg. ISBN
978-3-540-48085-3.

Gupta, A. Formal hardware verification methods: A survey.
In Computer-Aided Verification, pp. 5–92. Springer, 1992.

Haj-Ali, A., Ahmed, N. K., Willke, T., Gonzalez, J.,
Asanovic, K., and Stoica, I. Deep reinforcement learning
in system optimization. arXiv preprint arXiv:1908.01275,
2019.

Hao, M., Toksoz, L., Li, N., Halim, E. E., Hoffmann, H., and
Gunawi, H. S. Linnos: Predictability on unpredictable
flash storage with a light neural network. In Proc. OSDI,
2020.

Hashemi, M., Swersky, K., Smith, J., Ayers, G., Litz, H.,
Chang, J., Kozyrakis, C., and Ranganathan, P. Learning
memory access patterns. In International Conference on
Machine Learning, 2018.

Jay, N., Rotman, N., Godfrey, B., Schapira, M., and Tamar,
A. A deep reinforcement learning perspective on inter-
net congestion control. In International Conference on
Machine Learning. PMLR, 2019.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In Proc. CAV, 2017.

Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., and Kem-
per, A. Learned cardinalities: Estimating correlated joins
with deep learning. arXiv preprint arXiv:1809.00677,
2018.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., and Polyzotis, N.
The case for learned index structures. In Proc. SIGMOD,
2018.

Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J., and
Stoica, I. Learning to optimize join queries with deep
reinforcement learning. arXiv preprint arXiv:1808.03196,
2018.

Liu, H., Xu, M., Yu, Z., Corvinelli, V., and Zuzarte, C. Car-
dinality estimation using neural networks. In Proceedings
of the 25th Annual International Conference on Computer
Science and Software Engineering, pp. 53–59, 2015.

Maas, M., Andersen, D. G., Isard, M., Javanmard, M. M.,
McKinley, K. S., and Raffel, C. Learning-based memory
allocation for c++ server workloads. In Proc. ASPLOS,
2020.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. Re-
source management with deep reinforcement learning. In
Proceedings of the 15th ACM workshop on hot topics in
networks, pp. 50–56, 2016.

Mao, H., Negi, P., Narayan, A., Wang, H., Yang, J., Wang,
H., Marcus, R., Addanki, R., Khani, M., He, S., et al.
Park: An open platform for learning augmented computer
systems. 2019.

Marcus, R., Kipf, A., van Renen, A., Stoian, M., Misra, S.,
Kemper, A., Neumann, T., and Kraska, T. Benchmarking
learned indexes. arXiv preprint arXiv:2006.12804, 2020.

Qiu, Y., Liu, H., Anderson, T., Lin, Y., and Chen, A. Toward
reconfigurable kernel datapaths with learned optimiza-
tions. In Proc. HotOS, 2021.

Salman, H., Yang, G., Zhang, H., Hsieh, C.-J., and Zhang, P.
A convex relaxation barrier to tight robustness verification
of neural networks. Advances in Neural Information
Processing Systems, 32:9835–9846, 2019.

Salman, S., Streiffer, C., Chen, H., Benson, T., and Kadav,
A. Deepconf: Automating data center network topologies

Characterizing Neural Network Verification for Systems with NN4SYSBENCH

management with machine learning. In Proceedings of
the 2018 Workshop on Network Meets AI & ML, 2018.

Tan, C., Zhu, Y., and Guo, C. Building verified neural
networks with specifications for systems. In Proceed-
ings of the 12th ACM SIGOPS Asia-Pacific Workshop on
Systems, 2021.

Tang, C., Wang, Y., Dong, Z., Hu, G., Wang, Z., Wang,
M., and Chen, H. Xindex: a scalable learned index for
multicore data storage. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pp. 308–320, 2020.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-CROWN: Efficient bound prop-
agation with per-neuron split constraints for complete
and incomplete neural network verification. Advances in
Neural Information Processing Systems, 34, 2021.

Wang, X., Qu, C., Wu, W., Wang, J., and Zhou, Q. Are we
ready for learned cardinality estimation? arXiv preprint
arXiv:2012.06743, 2020.

Wei, T., Tan, C., and Changliu, L. VNN-
COMP 2021, NN4Sys benchmark. https:
//github.com/stanleybak/vnncomp2021/
blob/main/benchmarks/nn4sys/, 2021.

Xu, D., Shriver, D., Dwyer, M. B., and Elbaum, S. G. Sys-
tematic generation of diverse benchmarks for dnn veri-
fication. Computer Aided Verification, 12224:97 – 121,
2020a.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.-W., Huang,
M., Kailkhura, B., Lin, X., and Hsieh, C.-J. Automatic
perturbation analysis for scalable certified robustness and
beyond. Advances in Neural Information Processing
Systems, 33, 2020b.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X.,
and Hsieh, C.-J. Fast and Complete: Enabling com-
plete neural network verification with rapid and massively
parallel incomplete verifiers. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=nVZtXBI6LNn.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certi-
fication with general activation functions. Advances
in Neural Information Processing Systems, 31:4939–
4948, 2018. URL https://arxiv.org/pdf/
1811.00866.pdf.

https://github.com/stanleybak/vnncomp2021/blob/main/benchmarks/nn4sys/
https://github.com/stanleybak/vnncomp2021/blob/main/benchmarks/nn4sys/
https://github.com/stanleybak/vnncomp2021/blob/main/benchmarks/nn4sys/
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://arxiv.org/pdf/1811.00866.pdf
https://arxiv.org/pdf/1811.00866.pdf

