
PreCrime to the Rescue: Defeating Mobile Malware

One-step Ahead

Cheng Tan2 1, Haibo Li1, Yubin Xia1 3, Binyu Zang1, Cheng-Kang Chu4, Tieyan Li4

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, China
2Software School, Fudan University, China

3State Key Laboratory of Computer Architecture, ICT, Chinese Academy of Sciences
4Huawei Technologies Pte Ltd, Singapore

Abstract

Prior mobile malware defensive means is usually

retroactive, which may either lead to high false negatives

or can hardly recover systems states from malware activ-

ities. PreCrime is a proactive malware detection scheme

that detects and stops malware activities from happen-

ing. PreCrime creates mirrors of a mobile device in a

resource-rich and trusted cloud, which speculatively ex-

ecutes multiple likely user operations concurrently to de-

tect potential tampering and information leakage. Our

preliminary evaluation shows that PreCrime introduces

small performance overhead on smartphones and feasi-

ble delay during speculative execution on the cloud.

1 Introduction

As mobile devices become increasingly pervasive in our

daily lives, a mass of user privacy has been shifted to

the mobile devices. This, while bringing convenience of

uses, also stimulates a massive growth of mobile mal-

ware. According to one survey from McAfee [5], the

number of mobile malware has increased by 197% in

2013.

To defend against mobile malware, researchers have

proposed a number of approaches to detect and prevent

malware, by leveraging either offline analysis or online

analysis, or both [1, 8, 10, 14–16]. Among these sys-

tems, it is known that the offline analysis methods can-

not well detect sophisticated malware, which use subtle

conditions [4] or remote controlling [6] to delay attacks

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’14, June 25-26, 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-3024-4/14/06 ...$15.00.

to bypass the detection. Recently, Jekyll [17] uses self

return-oriented programming (ROP) to change its own

control flow and form attack logic, which successfully

passes Apple’s offline censorship.

Online analysis systems can perform better, since they

are running with the device and can get more runtime

information. In order to reduce performance overhead

and power consumption, some online systems, e.g., Para-

noid [15] and Secloud [19], leverage a trusted and pow-

erful cloud to detect malware by maintaining and moni-

toring a mirror of the mobile device on the cloud. In this

way, the overhead of malware detection is offloaded to

the cloud.

However, current cloud-based online malware detec-

tion systems can only detect malware but cannot prevent

them. This is because the mirror on the cloud usually

runs behind the mobile device. Thus, if a malware on a

phone steals user’s privacy and sends it out, such dam-

age cannot be undone even if the cloud detects such ma-

licious behavior later. Moreover, for severe attack, such

as rootkit, the lag of the checking on cloud provides an

attacking window for malware, who may bypass or even

break the whole security offloading system.

In this paper, we propose a proactive defensive ap-

proach, called PreCrime. PreCrime also maintains a

mirror on the cloud and leverages cloud computing re-

sources for malware detection. Unlike previous systems,

the cloud mirror of PreCrime runs one-step ahead of the

mobile device, so that as long as any malicious behavior

is detected on the mirror, a warning is sent back to the

device to prevent any damage.

In order to ensure that the mirror runs ahead of the

phone, PreCrime delays system events on the phone and

speculates user input events on the mirror. For system

events such as getting a new SMS, PreCrime first sends

them to the mirror to process. These events will be de-

livered on the phone as long as they won’t trigger any

malicious behavior on the mirror. On the other hand, the

trusted cloud will speculate all possible user input events

1

http://dx.doi.org/10.1145/2637166.2637224

according to current state, and fork the mirror to multi-

ple slaves, each of which will process one input event.

If any input has triggered malicious behavior, PreCrime

will send a warning to the mobile device to froze the ap-

plication from executing. In order to control the number

of possible inputs, PreCrime only speculatives one step

ahead.

We have implemented a prototype of PreCrime to

show its effectiveness and efficiency. Our preliminary

evaluation result shows that, in 99.5% of all cases, the

delay of next step speculative execution on PreCrime

is within 500ms, which acquires forking corresponding

number of slave-mirrors to the possible user inputs. And

99% of the synchronise latency is less than 70ms which

is affordable in normal scenario. Per day network traffic

overhead is about 9M for five hours of usage.

The main contributions of this paper are:

• The first cloud-based proactive defensive frame-

work for mobile security that runs one-step ahead

of the mobile device and thus can prevent damage

from occurring.

• The implementation of a scalable detection system

on cloud cluster that can make full use of comput-

ing resources of the cloud to achieve low latency of

malware detection.

The remainders of the paper are organized as follows.

Section 2 introduces the background of Android events,

malware trigger points and some previous works on se-

curity issues. Section 3 describes the overall design of

PreCrime. And we give a rudimental evaluation at sec-

tion 4. At last, we conclude and present our future work

at section 5.

2 Background

2.1 Events on Android

Android is the most popular open source OS running

on mobile platforms. Using Java as its programming

language, Android builds an entire new middleware to

hide low level details. Applications utilize a new set

of event APIs provided by Android framework which

is highly event driven. Such event APIs are the inter-

faces that are defined by the system and implemented

by applications. For example, when the battery become

low, a BATTERY LOW event is broadcasted, applica-

tion should register a broadcast receiver and override the

method onReceive() to handler that event. Correspond-

ing to each event, there are one or a series of event han-

dlers which an application can register.

In general, Android applications can be regarded as a

collection of event handlers. Each handler will be and

can only be triggered by a certain kind of event. Thus,

every piece of code in application, either normal or ma-

licious, needs to be triggered by some events.

Events on Android can be classified into two groups:

System events, which are generated by system, including

low battery message, boot complete message, SMS and

so on, and user events, which represent user’s interac-

tion, such as touching events. One important difference

between the two is that the delivering of system events

can be delayed, but delaying user events will hurt user’s

experience.

2.2 Trigger Points of Malware

Previous researches [16, 18] show that many malware

are triggered by various types of events, such as phone

calls, SMS receiving, boot complete message and so on.

Current anti-malware systems usually need to generate

events, e.g., using fuzzy testing to generate events ran-

domly, to trigger potential attacks for malware detection.

However, malware are evolving and their trigger con-

ditions are becoming nitpicking. For instance, some

of the malware are content-based [7] that receive the

malicious commands from SMS or network packages;

Some hide the malicious payload on benign code which

will be reorganized during attack [17]. Hence, such so-

phisticated malware can bypass most of current security

checks easily, such as Google Bouncer and app verifica-

tion service.

2.3 Related Work

Static analysis [2, 9, 13] is known to have false positive

and false negative since they do not have runtime infor-

mation. For example, malware can use reflection mech-

anism in Java to invoke sensitive functions or utilize en-

cryption to conceal their payloads. Dry-run (e.g. sym-

bolic execution) has the state explosion problem, which

cannot be used on the complicated applications.

Using cloud to enhance mobile security is a choice to

mitigate the performance collapse on the phone. Several

previous works leverages cloud servers’ mass resources

to solve security issues: some of them are online [11,15,

19] and some are offline [16].

Paranoid [15] is a system that clones a full replica of

the phone in the cloud. With more resources in cloud

server, Paranoid can provide more aggressive and pow-

erful anti-virus check and intrusion detections. However,

Paranoid cannot prevent damages caused by malware,

such as privacy leak, from happening.

AppsPlayground [16] is a framework that automates

the analysis process by analyzing GUI and injecting ar-

bitrary events to trigger malicious behaviors. However,

2

the code coverage of the AppsPlayground is only 33%

which is far from complete.

Compared with the previous works, PreCrime tries to

combine the concrete states of the online checking and

the isolated safety of offline checking.

3 Design and Implementation

A high-level architecture of PreCrime is illustrated in fig-

ure 1. On the cloud, PreCrime maintains a mirror of

the smartphone by synchronizing their events and states.

Based on current mirror state, speculative module will

predict and verify the possible user input in the cloned

slave-mirror. Various malware detection mechanisms

listed in table 1 are adopted on cloud, for detecting ab-

normal behavior one step ahead.

One challenge of PreCrime is to ensure that the mirror

on cloud must run ahead of the mobile phone. There-

fore, malware on mobile device can be stopped before

it causes any damage. PreCrime has developed the fol-

lowing three technologies to address this issue: first, on

the mobile side, delay the delivering of system events;

second, on the cloud side, speculate possible user events

one-step ahead; and third, clone multiple slave-mirrors

to check malware behavior concurrently.

Synchronization

Fork

Current
State

Detector

ALERT
Malware
Detection

Sepculation

Module

Inject
Events

Figure 1: PreCrime Architecture

3.1 Mirror Synchronization

In order to sync the states between the cloud mirror and

the mobile device, previous systems [15, 19] record the

full execution trace of mobile device and replay the trace

on the mirror. To minimize performance overhead and

power consumption, Paranoid [15] adopts a very loose

synchronization strategy, which is not suitable for Pre-

Crime since we need to run head of the mobile device.

Our prototype implements the event-level synchro-

nization mechanism described in Secloud [19]. Pre-

Crime synchronizes every event on the mobile device

(e.g., SMS arriving, app starting, user input) to the mir-

ror. However, it is still possible that the states between

mobile and cloud may diverge. In this case, we can

furthur adopt memory-level synchronization, which is

on-demand and happens infrequently. Accurate system

state synchronization is another challenge which is or-

thogonal to our PreCrime’s design.

3.2 Delaying System Events

Many malware use system events as the trigger

points of their malicious payload. The most fre-

quently used events [18] are BOOT COMPLETED and

SMS RECEIVED. As long as the system has booted or

a short message has been received, some attack is trig-

gered. Furthermore, instead of being triggered by ar-

bitrary events, some malware receives commands, e.g.,

through SMS, from attacker and execute them on the

phone. In this way, naively injecting random SMS can-

not trigger the malicious behaviors.

In PreCrime, the delivering of system events on the

mobile side is first sent to the mirror on the cloud and

delayed on the phone. Hence, the malicious code will

be triggered firstly on the cloud. As long as such at-

tack is detected, the cloud will send alert to the phone

to stop the event delivering to prevent any damage on

the phone. For example, considering a malware is wait-

ing for an SMS containing attacker’s command, once an

SMS has arrived, the phone will first send the SMS to

the cloud mirror and postpone the notification of SMS ar-

riving. After the mirror delivering the SMS, the lurking

malware will extract command from the SMS and exe-

cute it. Such behavior will be caught by deployed mal-

ware detection mechanisms, such as TaintDroid, since

executing command from SMS is considered to be mali-

cious. Then the cloud will send alert back to the phone

to stop the delivery of the SMS.

By delaying the system events on the phone, the cloud

mirror is able to run ahead of the mobile phone. Mean-

while, since most of the system events are asynchronous,

a user will hardly notice such delay.

3.3 Speculating User Events

Another exploration takes place when the view of the

phone has been changed. PreCrime will speculate pos-

sible user events in this occasion. Based on the strategy

that only explore one step ahead of the current state, Pre-

Crime do not meet state explosion problem. Since the

number of handlers registered on one particular view is

relatively small, the future states are limited. In our eval-

uation, there are no more than 63 handler components in

99.5% of the total views.

3

In terms of speculative the user’s behavior, master-

mirror will parse the components on the screen while

GUI have been modified. All the registered handlers and

handler components on current state will be reported to

the speculative module, which is a component running on

the cloud to predict the user events. Speculative module

keeps a database of previous user event trace to eliminate

the redundant exploration. Based on the current states

and history traces, speculative module will predict the

user events for further investigation. Meanwhile, master-

mirror forks itself and copy-on-write its images to sev-

eral slave-mirrors. These slave-mirrors will receive the

predicated behaviors from speculative module and exe-

cute them locally.

3.4 Concurrent slave-mirror Clone

Many previous works believe that mass of high over-

head checking mechanisms can be equipped easily us-

ing cloud. However, the cloud is actually not unlim-

ited in performance. Our preliminary evaluation shows

that the KVM emulator, which is the fastest emulator

for Android currently available, on an Intel i7 proces-

sor can only slightly outperform a Galaxy-Nexus phone.

A standard Java benchmark, CaffeinBenchmark3.0, has

been tested, and the KVM emulator can only outperform

the mobile device in about 18% in overall scores.

Nevertheless, considering the number of cores, cloud

servers still have much more powerful computing re-

sources than mobile phones. For example, from previ-

ous research [15] dozens of emulators can be running

concurrently on one physical server. So as to utilize the

resource of nowadays multi-core physical machine, Pre-

Crime tries to explore phone’s dangerous states simul-

taneously, instead of detecting malicious behaviors se-

quentially in one emulator. Therefore, concurrent slave-

mirror clone is the key technique to generate these emu-

lators.

In our preliminary implementation, PreCrime forks

slave-mirrors by copy-on-write the master-mirror’s

memory and images and reinitializing the IPC tunnels

and sockets. In addition, two algorithms are imple-

mented for cloning multiple slave-mirrors simultane-

ously. One straw-man implementation is called Loop

Cloning Algorithm which invokes master-mirror clone

multiple times within a loop. Such algorithm will seri-

alized all the cloning operations and has poor scalabil-

ity. Another algorithm, named Hierarchy Cloning Algo-

rithm, utilizes all the available slave-mirror with master-

mirror to clone new slave-mirrors in parallel. This al-

gorithm can fully utilize multi-core processor to achieve

good performance

3.5 Malicious Behavior Detection

PreCrime tries to combine different security systems fo-

cusing on different levels as shown in table 1. Among

these systems, static schemes can be used with little lim-

itation, since the detection is done offline and there are

plenty of resources on cloud. Static analysis will be only

employed when the application has been installed. After

the application installation, PreCrime on the phone will

prevent its running until the static checking on cloud is

over.

However, dynamic schemes cannot be deployed

wildly. PreCrime must constrain the performance over-

head of dynamic detection systems to a relatively low

level. In PreCrime’s malicious behavior detection de-

sign, we choose several powerful and low overhead sys-

tems as the dynamic detection tools. Each of them also

should fulfill the requirement of running on different

software layers and being without any conflicts when

running.

3.6 Latency Analysis

PreCrime uses two different ways to handle user events

and system events. For user events, they cannot be de-

layed for a long time. Our idea is to extend handler’s

time with a imperceptible time (less than 100ms) and use

user’s thinking and hesitating time to hide the latency of

events forwarding. As illustrated in figure 2, PreCrime

synchronizes the event to master-mirror before it is de-

livered locally. This will guarantee that the event handler

on master-mirror is executed ahead of the smartphone.

Supposing this user input starts a new activity, PreCrime

is going to explore all the possibilities based on current

view. Several slave-mirrors will be forked and each of

them explores one possible path. If there is any malicious

behaviors detected, an alert will send to user to stop that

attack from happening.

System event’s handling is straightforward. PreCrime

just delays the propagation of the events on the phone

and using a slave-mirror on cloud to verify whether it

is safe to deliver this event. If a malicious behavior is

detected, smartphone will not broadcast this event until

the malware is stopped.

4 Preliminary Evaluation

In this section, we present the preliminary evaluation re-

sult of PreCrime. All the evaluation was conducted on

a Samsung Galaxy Nexus smartphone, which has a 1.2

GHz TI OMAP4460 CPU, a 1 GB memory, 16 GB in-

ternal storage, a 1750 mAh Battery and 1280x720 dis-

play. The cloud server is a PC with 2.8 GHz Intel i7-930

4

Table 1: Cloud Mirror Protection Mechanism

Security Mechanism Problems Integrated Systems

Static Scheme
Virus AV tools [2,3]

Spyware RiskRanker [13], ComDroid [9]

Dynamic Scheme

Privacy Leak TaintDroid [10]

Privilege Escalation XMandDroid [8]

RootKit RGBDroid [14]

Code Injection/ Buffer Overflow Syscall-based Detector [12]

Handling UI Input 1

Handling UI Input 1

Handling UI Input 2'

Handling UI Input 2''

Handling UI Input 2'''

Sync

Fork

Delay Thinking Time
Mobile Phone

Master-mirror

Slave-mirror'

Slave-mirror''

Slave-mirror'''

1 2''

2'''

2''

2'

Alert!

Handling SMSSync

Fork

Delay
Mobile Phone

Master-mirror

Handling SMS

Handling SMS

Slave-mirror

消息传递
消息传递

SMS Arrives (System Evnet)

UI Input (User Event)

Speculative UI Inputs

Time

Time

Figure 2: Procedure of Two Events Handling

quad-core CPU, 16 GB memory, 3 TB disk and 100/1000

Mbps NIC.

4.1 Number of Next Possible States

The number of next possible states for a specific view

determines how many slave-mirror would be forked. We

have evaluated top 150 apps from GooglePlay free list.

By using fuzzy test tool (Monkey) and manually clicks,

we have explored 654 distinct views from these apps. In

our test, the average number of handler components in

one window is 6, and the average number of event han-

dlers for each view is 3. The detailed distribution is il-

lustrated in CDF figure 3.

For 99.5% of total activities of the tested apps, there

are no more than 44 handlers and 63 handler compo-

nents. Thus, the worst case of 99.5% is that PreCrime

would clone 63 slave-mirrors. According to our evalu-

ation at section 4.3, cloning 63 slave-mirrors will cost

about 500ms, which is acceptable when a new activity is

started.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
e

rc
e

n
ta

g
e

Number of Handlers/Handler Components in One Activity

Distribution of Handlers per Activity

Handler Components
Handlers

Figure 3: Distribution of Handlers/Handler Components in

one Activity

4.2 PreCrime Latency

We evaluated the latency of synchronization on PreCrime

in our laboratory environment to prove the feasible of our

design. The latency contains two parts: network round-

trip time from mobile to cloud and the time of event col-

lection and injection to mirror. Hence, event sync time is

highly relevant to the network status.

In our test, we have deployed PreCrime on the smart-

phone, Galaxy Nexus, and a PC as cloud. They are con-

nected through the wifi network. Figure 4 is a CDF graph

of network RTT and event sync latency. In our lab, 90%

of the event sync latencies are less than 21.4ms, and 95%,

99%, 99.5% are less than 25.2ms, 74.9ms, 112ms respec-

tively.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

P
e

rc
e

n
ta

g
e

Latency (ms)

Distribution of PreCrime Latency

event sync latency
network RTT

Figure 4: Network RTT and Event Sync Latency

5

4.3 Forking Concurrent Slave-mirrors

The performance of concurrent Slave-mirrors forking is

critical for the speculative execution. Thus, we have eval-

uated the time for cloning 1, 3, 7, 15, 31, 63 and 127

slave-mirrors from one master-mirror in both Hierarchy

Cloning Algorithm and Loop Cloning Algorithm. The

detailed data is illustrated in figure 5.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

13 7 15 31 63 127

T
im

e
(m

s
)

Number of VMs

Hierarchy Clone
Loop Clone
fit-hierarchy

fit-loop

Figure 5: Two Fork Algorithm Performance

As we can see, the scalability of Hierarchy Cloning

Algorithm is linear, and the scalability of Loop Cloning

Algorithm is polynomial. By using Hierarchy Cloning

Algorithm, the average time for cloning one slave-mirror

is about 8.3ms. In detail, the time of cloning 1, 3, 7,

15, 31, 63 and 127 slave-mirrors are 6.3, 25, 36.5, 100.6,

158.3, 504.3, 1080 ms respectively.

Strangely, there is an random stall, which steadily

costs 4s, during copy-on-write the images on btrfs. Such

pauses might come from the implementation of COW

operations in btrfs. And the problem might be solved by

building PreCrime on two IO-mirrored btrfs disks, which

is our future work.

4.4 Network Traffic Overhead

In order to test the network traffic overhead of PreCrime,

we designed two scenarios about daily usage of smart-

phone: adding ten contacts with email address, phone

number, home address and playing a popular mobile

game “Cut the Rope” for ten minutes.

Because of the preliminary implementation, only

events have been sent without other non-determinisms.

And all the data are plaintext without any encoding. Ta-

ble 2 shows the evaluation result.

Table 2: Network Traffic on two scenarios

Application Evaluation Traffic Network

Time (s) Size (KB) Traffic (M/H)

Contacts 615 253 1.45

Cut the Rope 600 400 2.34

The result shows that PreCrime leads to feasible net-

work traffic overhead for synchronization. If the user use

its smartphone five hours a day, including three hours of

normal usage and two hours of game, about 9M network

traffic will be cost per day.

5 Conclusion and future work

In this paper, we propose a cloud-based proactive defen-

sive framework named PreCrime. PreCrime constructs

a mirror of the smartphone on cloud, which is called

master-mirror. Based on the current states of master-

mirror, PreCrime explores the possible states simultane-

ously in several slave-mirrors by concurrent slave-mirror

clone to utilize the multi-core capability on today’s hard-

ware. All the speculative behaviors running on slave-

mirrors will be inspected by multiple detection tools.

Several benefits will be achieved by PreCrime: False

positives will be avoided by using real states for check-

ing; Performance overhead on the phone is mitigated by

offloading heavy dynamic inspections to cloud; States

explosion problem is assuaged by forecasting only one

step ahead. Also, integrating new security mechanism to

PreCrime is transparent to user, because the performance

of smartphone will keep stable.

In our future work, we will implement the master-

mirror detailed state synchronization using DSM or non-

deterministic replay system. And the slave-mirror clone

feature will be extended to the KVM based emulator

from current qemu based emulator. In order to reduce

the exploring space of PreCrime on runtime, some of-

fline exploring can be achieved to examine some critical

paths, just like what AppsPlayground [16] does. And an-

other optimization about speculative execution might be

to explore more aggressively with several steps ahead of

current states in the spare time. This will lessen the num-

ber of exploration in the following checking.

Further more, slave-mirror do not have to be a full-

fledged emulator. It can only run a Dalvik virtual ma-

chine instead. Since all we want to know is that whether

there are any attacks in the future, display or touching

inputs are not necessary.

6 Acknowledgments

We thank the anonymous reviewers for their insight-

ful comments. This work is supported by the Opening

Project of State Key Laboratory of Computer Architec-

ture, a research grant from Huawei Technologies, Inc.,

and China National Natural Science Foundation (No.

61303011).

References

[1] ”android and security”. ”http://googlemobile.blogspot.jp/2012/02/android-

and-security.html”.

6

[2] Clamav. http://www.clamav.net/lang/en/.

[3] F-secure corporation. f-secure mobile anti-virus. http://mobile.f-

secure.com/.

[4] Magna carta holy grail. http://www.esecurityplanet.com/mobile-

security/mcafee-warns-of-july-4-android-malware.html.

[5] ”mcafee mobile security report”.

http://www.mcafee.com/hk/resources/reports/rp-mobile-

security-consumer-trends.pdf.

[6] Security alert: Anserverbot, new sophisticated an-

droid bot found in alternative android markets.

http://www.csc.ncsu.edu/faculty/jiang/AnserverBot/.

[7] Security alert: New nickibot spyware found in alternative android

markets. http://www.csc.ncsu.edu/faculty/jiang/NickiBot/.

[8] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi.

Xmandroid: A new android evolution to mitigate privilege esca-

lation attacks.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing

inter-application communication in android. In Proceedings of

the 9th international conference on Mobile systems, applications,

and services, pages 239–252. ACM, 2011.

[10] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and

A. Sheth. TaintDroid: an information-flow tracking system for

realtime privacy monitoring on smartphones. In Proc. of OSDI,

2010.

[11] J. Flinn and Z. Mao. Can deterministic replay be an enabling tool

for mobile computing? In Proc. HotMobile, 2011.

[12] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A

sense of self for unix processes. In Security and Privacy, 1996.

Proceedings., 1996 IEEE Symposium on, pages 120–128. IEEE,

1996.

[13] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker:

scalable and accurate zero-day android malware detection. In

Proc. MobiSys, 2012.

[14] Y. Park, C. Lee, C. Lee, J. Lim, S. Han, M. Park, and S.-J. Cho.

Rgbdroid: a novel response-based approach to android privilege

escalation attacks. In Proceedings of the 5th USENIX conference

on Large-Scale Exploits and Emergent Threats, LEET’12, pages

9–9, Berkeley, CA, USA, 2012. USENIX Association.

[15] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Para-

noid android: versatile protection for smartphones. In Proc. AC-

SAC, 2010.

[16] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic

security analysis of smartphone applications. In Proceedings of

the third ACM conference on Data and application security and

privacy, pages 209–220. ACM, 2013.

[17] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll on ios:

when benign apps become evil. In Presented as part of the 22nd

USENIX Security Symposium, pages 559–572. USENIX, 2013.

[18] Y. Zhou and X. Jiang. Dissecting android malware: Characteri-

zation and evolution. In Proc. Oakland, 2012.

[19] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and

W. Sanders. Secloud: A cloud-based comprehensive and

lightweight security solution for smartphones. Computers & Se-

curity, 37:215–227, 2013.

7

