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Abstract
Snapshot Isolation (SI) is a popular isolation level, supported 
by many databases and is widely used by applications. Un-
derstanding and checking SI is essential. However, today’s SI 
definitions can be obscure for non-experts to understand, or 
inefficient to verify, or dependent on specific implementations. 
In contrast, our goal is to offer a definition that is straightfor-
ward and easy to comprehend, enables efficient verification, 
and remains independent of the underlying implementation. 
In this paper, we introduce such an SI definition using a  data 
structure called BC-graphs. We prove that our SI definition is 
equivalent to Adya SI [7], the de facto SI definition. We did 
an empirical study to show that our SI definition accelerates 
SI checking significantly compared to checking Adya SI.

CCS Concepts: • General and reference → Verification; • 
Information systems → Database transaction processing.
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1 Introduction
Snapshot isolation (SI) is a widely used isolation level. Many 
of today’s commercial databases, including Oracle, TiDB [22], 
MongoDB [27], SQL Server [4], and YugabyteDB [6], sup-
port snapshot isolation. How to implement SI has been well-
studied [10, 20, 22, 25]: people propose many efficient con-
currency protocols to implement SI and its variants.

However, limited efforts have been spent on studying and 
communicating the intuition behind SI’s specifications. As 
a consequence, SI’s correctness guarantees are difficult for 
ordinary database users (isolation-level non-experts) to com-
prehend. We argue this is due to the complicated SI definitions
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we use today [7, 9, 14, 16]. On the contrary, serializability’s
definition [11, 26] is (a) easy to comprehend: if a set of trans-
actions (called a history) is serializable, then the history is
equivalent to sequentially executing these transactions on a
single-copy database; and (b) easy to check: a checker con-
structs a serialization graph in which nodes are committed
transactions and edges are happen-before relationships be-
tween conflicting transactions. The history is serializable iff
the serialization graph is acyclic.

Unlike serializability, the SI definition (§3.3) is less intu-
itive and harder to check (§5). The de facto SI [7] is defined
on a graph called Start-ordered Serialization Graph (Defini-
tion 3, §3.3), similar to the serialization graph. But, instead of
requiring acyclic graphs, SI allows certain types of cycles and
disallows others: in a nutshell, there are four types of edges
in start-ordered serialization graphs; and SI allows the cycles
containing two (or more) consecutive edges of a specific type.

In this paper, we introduce a new SI definition that is easier
to interpret and is algorithmic complexity-wise cheaper to
check. The definition has a neat parallel to serializability (§2);
this helps people who know serializability understand. Based
on our definition, the SI checking algorithm (i.e., checking if
a given history is SI) is simple and runs faster than the current
algorithm that uses today’s SI definition.

The proposed SI definition is based on a new type of graph
called BC-graphs. We will elaborate BC-graphs in section 2
and formally define them in Definition 6 (§3.4). An analogy is
that BC-graphs are to SI as serialization graphs are to serializ-
ability. Then, our SI definition is as follows: if the BC-graph of
a history is acyclic, then the history is SI. This SI definition is
equivalent to the state-of-the-art SI definition, which we prove
in Theorem 8 (§4). With this new definition, the checking
algorithm is straightforward: given a history h, construct h’s
BC-graph g and check if g is acyclic.

To evaluate the checking efficiency, we conduct an em-
pirical study to compare our SI checking algorithm with a
baseline checking today’s SI. Results show that our algorithm
outperforms the baseline by 114× on a mid-sized history (90s
execution of Jepsen testing framework [2]).

The major technical contributions are borrowed from our
prior paper [35]. The purpose of this paper is to explain and
argue for a better SI definition. We strongly believe that under-
standing and checking SI is essential and urgent because many
systems use SI [4, 6, 22], and misusing isolation levels has
severe consequences [1, 33]. Application developers (who are
also database users) must understand the guarantees provided
by SI so that they can use SI (hence many today’s databases)
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correctly. We hope this new SI definition can clarify and disam-
biguate SI’s specifications and further help developers reduce
the incorrect usage of SI.

2 A new Snapshot Isolation definition
This section introduces BC-graphs, describes our SI definition,
and provides an intuitive interpretation of SI. For simplicity,
we describe these less formally. Rigorously defining them
requires a series of prerequisite terms and notions. We describe
prerequisites and formally define SI in section 3.

In this paper, all operations are wrapped in transactions.
Transactions start with a begin, come with a sequence of reads
and writes, and ends with a commit or an abort.
BC-graph. BC-graphs are directed graphs; BC-graph’s nodes
are begin/commit operations of committed transactions; BC-
graph’s edges are happen-before relationships between begin/-
commit operations. Edges come from five cases in a history.
We describe them below.

Consider two transactions Ti and Tj. Bi and Ci represent the
begin and commit operations, respectively (similar for Tj). x
is a key in the database. For any two transactions, a BC-graph
has the following edges:
1. Ti must begin then commit: Bi → Ci.
2. If Tj reads a value of x written by Ti, then Ti should commit

before Tj begins: Ci → Bj.
3. If Tj overwrites a value of x written by Ti, then Ti should

commit before Tj begins: Ci → Bj.
4. If Tj writes a value of x after Ti reads its old value, then Ti

should begin before Tj commits: Bi → Cj.

Time-precedes order. SI definition also requires a time-precedes
order ≺t [7, §4.3.1] that represents a partial order of begin
and commit events (this can be used for dictating wall-clock
time ordering). We use bi and ci to represent Ti’s begin and
commit events in the history (as opposed to Bi, Ci, which are
nodes in the BC-graph).
5. Ti’s commit time-precedes Tj’s begin (ci ≺t bj): Ci → Bj.

SI definition. As stated in section 1, our SI definition is simple:
given a history h, if the BC-graph of h is acyclic, then h is SI.
An intuitive interpretation of an SI history. Given our SI
definition, if a history h is SI, there is a total order of transac-
tion begins and commits, say ŝ. (One can get ŝ by topological
sorting the BC-graph of h.) Assume all reads in a transaction
Ti happen at the moment when Ti begins and all writes happen
at the moment when Ti commits. Then, ŝ extends to a serial
order of all reads and writes in h. Crucially, this serial order
of reads/writes has two properties.

First, sequentially executing these reads and writes produces
the same results in h (i.e., returning the same values for reads
and resulting in the same final database state). For example,
below is a well-known history, called write skew [21], which
is SI but not serializability. The history has two transactions

(we omit some obvious time-precedes order, like b1 ≺t c1; x
and y have an initial value of 0):

T1 : b1, r1 (x) → 0, r1 (y) → 0, w1 (x, 1), c1

T2 : b2, r2 (x) → 0, r2 (y) → 0, w2 (y, 2), c2

(≺t: b1 ≺t c2, b2 ≺t c1)
By our definition, if this history is SI, there exists a serial order
of begins (delegating reads) and commits (delegating writes),
such that sequentially executing reads and writes produces the
same results for reads and ends up with the same final state:

[x = 0, y = 0] r1 (x), r1 (y)︸       ︷︷       ︸
b1

, r2 (x), r2 (y)︸       ︷︷       ︸
b2

, w1 (x, 1)︸   ︷︷   ︸
c1

, w2 (y, 2)︸   ︷︷   ︸
c2

Second, the serial order of reads/writes generated from ŝ
guarantees that no conflicting writes are concurrent. This can
be proved by contradiction. Assume ŝ has two concurrent
transactions Ti and Tj. To be concurrent, neither Ti nor Tj
commits before the other begins; for the total order ŝ, that
is ci ⊀ŝ bj and cj ⊀ŝ bi. However, two conflicting writes
have a “type-3 edge” above—one write happens before the
other—indicating ci ≺ŝ bj or cj ≺ŝ bi, a contradiction.
A note on “self-reads”. The reads previously discussed as-
sume reading from other transactions. When a transaction
reads from its own writes—writing to x and then reading from
x—we call these self-reads. Self-reads are simpler because
they do not introduce dependencies between transactions. Our
intuitive interpretation remains applicable: it suffices to posit
such self-reads immediately after the corresponding writes in
the serial order of reads/writes (instead of with other reads).
A neat parallel to serializability. Our SI definition has a
nice parallel to the canonical serializability definition. Be-
low we put serializability and SI together to highlight their
connections:
• A history is serializability iff its serialization graph is

acyclic; a history is SI iff its BC-graph is acyclic.
• Serialization graph and BC-graph are both simple directed

graphs (no type is associated with edges).
• In serializability, a serialization graph include transactions

as nodes and dependencies of transactions as edges; in SI,
a BC-graph include begin/commit operations as nodes and
dependencies of begin/commit operations as edges.

• A serializable history is equivalent to some sequential exe-
cution of transactions; an SI history is equivalent to some
sequential execution of begins (delegating reads) and com-
mits (delegating writes).

3 Snapshot Isolation
3.1 Prerequisite
In this section, we define the setup and common notations.
A database stores a set of data objects, {x, y, z, . . . }. Clients
issue transactions to access these objects concurrently. A trans-
action Ti is an ordered set of operations on data objects. An
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operation is a basic unit that can be executed by the database.
In our setup, an operation can be a read or a write on a data
object. A read in a transaction Ti is written as ri (xj), which
means Ti reads from a version of x written by transaction Tj,
A write in the transaction Ti is written as wi (xi), where the
subscript i of wi represents the write operation belongs to Ti,
and the subscript of xi represents which version of x value is.
Formally, a transaction is defined as follows.

Definition 1 (Transaction). A transaction T is a 2-tuple (M,
TO). M is a set of read/write operations on the objects stored
in a database. TO is a total order of the operations in M.

Each transaction is associated with a begin and a com-
mit event. We use bi and ci to denote the begin and commit
event of Ti. For simplicity, we assume each transaction only
writes an object once, a common assumption used by prior
work [30, 35]. A transaction has two possible states: commit-
ted or aborted. A history summarizes a total order on commit-
ted object versions (called version order, denoted as ≪) over
all the executed transactions.

Definition 2 (History). A history h is a set of transactions with
a total committed version order (≪) for all the data objects.

3.2 SI definitions
In 1995, Berenson et al. [9] critiqued ANSI SQL isolation
levels’ ambiguities and introduced snapshot isolation as a new
isolation level. We refer to this SI definition as SI’95. SI’95 is
defined on action rules, which focuses on the implementation
mechanisms. This definition is good for implementing SI but
is challenging for checking if a history is SI.

In 1999, Adya proposed a graph-based definition [7, 8].
Adya SI is defined as proscribing certain cycles in graphs
(§3.3). To check Adya SI, a checker needs to find all cycles
in a graph; for each cycle, the checker examines if the cy-
cle possesses the forbidden patterns. Meanwhile, people pro-
posed various SI variants to trade off consistency and per-
formance, including Generalized SI [20], Prefix-Consistent
SI [20], Strong SI [19] and Strong session SI [19]. Later, in
2016, Cerone et al. [13] proposed an axiom-based SI definition
and proved that it is equivalent to Adya SI.

In 2017, Crooks et al. [16, 18] proposed a state-based def-
inition of SI, which is the first work to define SI based on
client-observable states. They also analyzed the existing SI
definitions, and proved that some SI variants are equivalent
from the perspective of clients and summarized a hierarchy
of these SI variants [18, Figure 4]:

Strong SI ⊂ (Prefix-Consistent SI ≡ Strong Session SI)
⊂ (Generalized SI ≡ ANSI SI)
⊂ Adya SI

where SIA ≡ SIB indicates SIA and SIB are equivalent; SIA ⊂
SIB means that SIA is stricter than SIB, and SIB can accept all
the histories accepted by SIA.

3.3 Adya SI
Adya SI is widely used and is regarded as the state-of-the-art
SI definition [3]. This section formally defines Adya SI.

To capture the ordering of begin and commit events, SI
includes the time-precedes order (≺t) over the begin/commit
events, which is a partial order specifies bi ≺t ci for any
transaction Ti, and the ordering between bi and cj for any
pair transactions Ti, Tj, i ≠ j. Each key in the data store has
a version order which specifies in which order the different
versions of values are installed. In Adya’s definition, SI [7]
has a natural interpretation:
• Snapshot read: ∀ ri (xj) in a history h, cj ≺t bi; and ∀ wk in

h(j ≠ k), either bi ≺t ck or ck ≺t bi ∧ xk ≪ xj, where ≪
means xk is installed before xj in the version order.

• Snapshot write: if Ti and Tj are concurrent and they modify
the same object, then either ci ≺t bj and cj ≺t bi.
Adya proposed a graph-based specification and proved its

equivalence to these two rules. Adya SI defines four depen-
dencies between two transactions Ti and Tj that correspond to
four types of edges:
• direct read-dependency: Tj directly read-depends on Ti if

Tj reads from the value that is written by Ti.
• direct write-dependency: Tj directly write-depends on Ti if

Tj writes the next version of value after Ti.
• direct anti-dependency: Tj anti-depends on Ti if Ti reads a

version of value and Tj updates it to be the next version.
• start-dependency: Tj start-depends on Ti if Ti commits

before Tj according to the time-precedes order.
A start-ordered serialization graph (SSG) is defined given a
set of transactions and all the dependencies above:

Definition 3 (Start-ordered Serialization Graph). Given a his-
tory h, its start-ordered serialization graph SSG, represented as
SSG(h), is defined as a directed graph. Each node represents
a committed transaction in h. Each edge represents a type
of dependency between two transactions. Edges Ti

wr−−→ Tj,
Ti

ww−−→ Tj, Ti
rw−−→ Tj, Ti

start−−−→ Tj correspond to the read-
dependency, write-dependency, anti-dependency, and start-
dependency, respectively.

Next, we define SI based on SSG.

Definition 4 (Adya SI). Given a history h together with all the
dependencies and a time-precedes order ≺t, h is SI if SSG(h)
proscribes G1, G-SIa and G-SIb, where G1, G-SIa and G-SIb
are defined as:
1. G1 includes three rules:

• G1a (Aborted Read): read from an aborted transaction;
• G1b (Intermediate Read): Ti reads a version of x from

Tj which is not the final write of x by Tj;
• G1c (Circular Information Flow): SSG(h) contains cy-

cles with only read/write/start dependency edges.
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2. G-SIa: SSG(h) contains a read/write-dependency edge
Ti → Tj without a start-dependency edge Ti → Tj.

3. G-SIb: SSG(h) contains a directed cycle with exactly one
anti-dependency edge.

Implicit assumptions. Adya [7] has made two implicit as-
sumptions. First, a read will read from the most recent write
with respect to the time-precedes order ≺t. That is, if Tj reads
x from Ti, then (a) Ti happens before Tj (i.e., ci ≺t bj), and
(b) no such a transaction Tk writing to x happens “in-between”
them (i.e., �bk, ck : ci ≺t bk ∧ ck ≺t bj). Second, if a trans-
action Tj overwrite a value written by Ti, then Ti committed
before Tj begin (i.e., ci ≺t bj). These implicit assumptions are
used in Adya’s proof; we also use them in ours.

Corollary 5 (Dependencies and time-precedes order). By
the implicit assumptions, we conclude that the time-precedes
order does not conflict with the dependencies:

Tj read/write/start-depends on Ti ⇒ ci ≺t bj

and Tj anti-depends on Ti ⇒ bi ≺t cj

3.4 Our definition of snapshot isolation
Adya SI suffers from the intrinsic complexity of finding and
checking the types of cycles. We mitigate the problem by
defining BC-graph.

Definition 6 (BC-graph). Given a history h together with its
dependencies and a time-precedes order ≺t over begin/commit
events, a BC-graph is constructed as follows:
1. if any transaction has aborted/intermediate reads (G1a/G1b),

the h is invalid for BC-graph and the construction stops.
2. create two nodes (Bi and Ci) for each transaction (Ti).
3. create edges as follows:

• intra-txn edges: for each committed transaction Ti in h,
add an edge Bi → Ci.

• read-dependency and write-dependency edges: for each
read-dependency and write-dependency Ti → Tj in h,
create an edge from Ci → Bj.

• anti-dependency edges: for each anti-dependency Ti →
Tj, create an edge Bi → Cj.

• start-dependency edges: for all ci ≺t bj , create Ci → Bj.

Read-dependency, write-dependency, anti-dependency and
start-dependency edges are also called inter-txn edges. Next,
we define SI based on the acyclic property of a BC-graph:

Definition 7 (Our SI). Given a history h and write-dependencies,
read-dependencies, anti-dependencies, and a time-precedes
order ≺t, h is SI if h’s BC-graph exists and is acyclic.

Runtime complexity of checking SI. Our SI definition con-
verts the problem of determining whether a history is SI into
a problem of checking if the history’s BC-graph has cycles,
which can be easily solved in a linear time. Specifically, two
classic algorithms of cycle detection are back-edge-based

depth-first search (DFS) and topological sort, both of which
have a total complexity of O( |V | + |E |). (|V | and |E | represent
the number of nodes and edges in the BC-graph, respectively.)
Adya SI definition requires determining if the cycle has zero
or one anti-dependency edges for all the cycles in the BC-
graph. So it needs to find all the cycles in the dependency
graph first, and then iterate over all the edges of each cycle
to check if it violates the condition. A naive implementation
is to use DFS to find all the cycles, which costs exponential
time. Some more advanced algorithms for finding all the cy-
cles cost linear time: Szwarcfiter and Lauer algorithm [29]
costs O(V + EC), Tarjan algorithm [31, 32] costs O(VEC),
and Johnson algorithm [23] costs O((V + E)C) where C is
the number of simple cycles. However, the constant C varies
and can be exponential if the graph is dense. By dense, we
mean the number of edges is close to the maximal number
of edges. Our definition helps stabilize the performance and
accelerates determining whether a history is SI by removing
the dependency on C in theory.

4 Equivalence to Adya SI
Next, we prove that our SI definition is equivalent to Adya SI.

Theorem 8. Given a history h together with all the dependen-
cies and a time-precedes order ≺t of begin/commit events, h’s
BC-graph exists and is acyclic ⇔ h is Adya SI.

Before proving the main Theorem 8, we need two helper
lemmas to build the connection between start-ordered serial-
ization graphs (SSGs) and BC-graphs.

Lemma 9. Given a history h together with all the depen-
dencies, for any path p = T1 → T2 ⇝ Tn in SSG(h) with
non-consecutive anti-dependency edges, b1 ≺t cn.

Proof. We show this by induction. The Base step proves that
for zero or one anti-dependency edge, the claim (b1 ≺t cn)
holds. The induction step proves that for a path having k non-
consecutive anti-dependency edges, the claim holds.

Base step: (1) for a path p that has zero anti-dependency
edges, according to the Corollary 5, c1 ≺t b2; plus a trans-
action’s begin always time-precedes ≺t its commit, we get
b1 ≺t c1 ≺t b2 ≺t c2. By repeating this step, we prove the
claim b1 ≺t cn. (2) for a path p that has one anti-dependency
edge, say Ti

rw−−→ Ti+1, then by Corollary 5, we know bi ≺t ci+1.
Because T1 ⇝ Ti and Ti+1 ⇝ Tn have zero anti-dependency
edge and the above point (1), we have b1 ≺t · · · ≺t bi and
ci+1 ≺t · · · ≺t cn. Combined with bi ≺t ci+1, we prove the
claim b1 ≺t cn.

Inductive step: Assume that b1 ≺t cn holds for any path p
with ≤ k non-consecutive anti-dependency edges. Consider a
path with k + 1 non-consecutive anti-dependency edges and
assume Ti → Ti+1 is the first anti-dependency edge in p. We
see the path as three pieces: (a) because T1 ⇝ Ti+1 has one
anti-dependency edge, according to the base step, b1 ≺t ci+1.
(b) because of the non-consecutive anti-dependency edges
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constraint, Ti+1 → Ti+2 must be a non-anti-dependency edge
hence ci+1 ≺t bi+2. (c) finally, the path Ti+2 ⇝ Tn has k non-
consecutive anti-dependency edges. By induction hypothesis,
bi+2 ≺t cn. Combine the above (a)–(c) and we get b1 ≺t ci+1 ≺t
bi+2 ≺t cn. Therefore, b1 ≺t cn holds for the k + 1 case. □

Lemma 10. Given a history h together with all the dependen-
cies, and a time-precedes order ≺t of begin/commit events,
SSG(h) has a cycle with non-consecutive anti-dependency
edges ⇔ h’s BC-graph g has a cycle.

Proof. Note that SSG(h) and BC-graph g has a one-to-one
mapping per Definition 3 and Definition 6: (1) for each node
Ti in SSG(h), there are two nodes Bi and Ci in BC-graph; and
(2) for each inter-txn edge in g, SSG(h) have an edge of the
same type because the edges in both graphs are built according
to the same dependencies and time-precedes order.

“⇐” Assume BC-graph has a cycle C. C may have two
types of edges: intra-txn edges and inter-txn edges. Note that
SSG(h) contains all the inter-txn edges of C. ∀Ci → Bj or
Bi → Cj in C, find the edge Ti → Tj in SSG(h). All the found
inter-txn edges form a cycle C′ in SSG(h).

Next, we prove that C′ does not have consecutive anti-
dependency edges; that is, for any Ti

rw−−→ Tj in C′, the im-
mediate precedent and immediate succedent edges must not
be anti-dependency ( rw−−→). By Definition 6, all edges in BC-
graph must contain both begin and commit. Therefore, any
path in BC-graph g, including the cycle C, has commit vertex
and begin vertex appear alternately. Now, consider the “one-
to-one mapped” edge regarding Ti

rw−−→ Tj in g: Bi
rw−−→ Cj. In

cycle C, its immediate precedent edge must be Cprev → Bi;
its immediate succedent edge must be Cj → Bsucc. Neither is
an anti-dependency edge because anti-dependency requires
pointing from B to C. Thus, for the cycle C′ in SSG(h), the
corresponding precedent and succedent edges Tprev → Ti and
Tj → Tsucc are not anti-dependency edges.

“⇒” Assume SSG(h) has a cycle C′ which has no consec-
utive anti-dependency edges: T1 → T2 ⇝ Tn → T1.

Case 1: C′ has no anti-dependency edges, and all the edges
are one of the other three edges (i.e., write-dependency, read-
dependency, and start-dependency). By the one-to-one edge
mapping and Definition 6, for each read-dependency, write-
dependency and start-dependency edge Ti → Tj, there is an
edge Ci → Bj in g. Hence, there is a cycle (B1 → C1) →
(B2 → C2) ⇝ (Bn → Cn) → B1 in g.

Case 2: C′ has exactly one anti-dependency edge. Assume
Ti → Tj is the only anti-dependency, then g has an edge
Bi → Cj. For the remaining path Tj ⇝ Ti in the cycle C′, all
the edges are non-anti-dependency, hence all pointing from B
to C. Therefore, we have Cj → (Bj+1 → Cj+1) ⇝ Bi, which
forms a cycle in g together with the edge Bi → Cj.

Case 3: C′ has multiple anti-dependency edges but neither
two of them are consecutive. We can apply the argument of
Case 2 to each anti-dependency edge and get a cycle in g. □

Finally, we prove Theorem 8.

Proof. “⇒” By construction in Definition 6, BC-graph (h)
exists naturally proscribes G1a and G1b. By Lemma 10, an
acyclic BC-graph g implies that SSG(h) does not have cycles
with zero or one anti-dependency edges, which means SSG(h)
proscribes G1c and G-SIb in Definition 4. Further, Corollary 5
implies that for any read/write dependency Ti → Tj, there
is ci ≺t bj, then by construction, a start-dependency edge
Ci → Bj exists in g. Therefore, SSG(h) has a corresponding
edge, hence G-SIa is proscribed. By Definition 4, the history
h is Adya SI.

“⇐” Given h is Adya SI, h proscribes G1a and G1b ⇒
BC-graph (h) exists by construction.

Next, we only need to prove BC-graph (h) is acyclic. h
is SI ⇒ SSG(h) does not have cycles with zero, one anti-
dependency edges. If we can further prove that Adya SI disal-
lows cycles with non-consecutive anti-dependency edges, then
by Lemma 10, g is acyclic and the claim holds. We prove this
by contradiction. Consider a cycle T1 ⇝ Tn → T1 containing
non-consecutive anti-dependency edges. Pick one non-anti-
dependency edge, say Ti → Tj. By Corollary 5, ci ≺t bj.
On the contrary, the rest of the cycle Tj ⇝ Tn → T1 ⇝ Ti
is a path with non-consecutive anti-dependency edges; by
Lemma 9, bj ≺t ci, which is a contradiction. □

5 Empirical study of SI checking performance
SI-checking algorithm implementations. For our checking
algorithm, we use a depth-first search algorithm to detect
cycles in BC-graph. If BC-graph is acyclic, then our algorithm
accepts the history as SI. Otherwise, it rejects.

For Adya’s SI checking algorithm (which we call base-
line), we use Kosaraju’s algorithm [28], a linear algorithm, to
identify all the strongly connected components (SCCs). We
then search cycles in each SCC using depth-first search. If
finding any cycle disallowed by Adya SI (i.e., cycles with non-
consecutive anti-dependency edges), the baseline rejects the
history. If no such cycle is found, it accepts. Both checking
algorithms are implemented in Java.
Experiment setup. We use Jepsen [2], a consistency testing
framework, to run an append benchmark (described below)
on TiDB [5] (configured to be SI). In our setup, 24 concurrent
clients keep issuing transactions to the database, and we collect
their responses to form a history. TiDB runs on a Ubuntu 20.04
machine from Google Cloud, with 16-core vCPUs (3.10GHz
Intel Xeon) and 64GB RAM. We run the checking algorithms
on a machine with a 12-core processor (AMD Ryzen 9 5900,
3.0GHz) and 64GB RAM. The OS is Ubuntu 20.04.
Benchmark. We use the append benchmark from Jepsen.
There are two types of operations, append operations and read
operations. An append operation appends a value to a keyed
list of integers. A read operation reads the integer list of a key,
by which the checking algorithms know the write order of
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Figure 1. The checking algorithm using our SI definition outperforms
the baseline based on Adya’s specification [7].

appends. In the construction of graphs, it concatenates con-
secutive appends by creating write-dependency edges. Each
transaction consists of one to eight operations. Each key is
written at most 20 times.
BC-graph checking outperforms the baseline. Figure 1
shows the results of our experiments. The x-axis is the history
generating time (i.e., how long the benchmark runs). It con-
trols the size of the history: the rate of issuing transactions
is approximately stable so that the sizes of histories grow ap-
proximately linearly in time. From Figure 1, the checking
algorithm based on our SI definition outperforms that based
on Adya’s specification [7] consistently. Our checking algo-
rithm runs faster for several reasons. First, it only needs to
detect whether BC-graph has cycles, but does not need to find
all the cycles or check whether the cycles are forbidden by
SI. Second, it costs exponential time to find all the cycles in
SSG using DFS, especially when the SSG is dense. This is
reflected in Figure 1 that the baseline grows exponentially.
Third, the SSGs, in our experiment, have a large amount of
start-dependency edges makes the performance gap signifi-
cant. The reason why the 40-second history takes less time is
that it has fewer dependency edges, mainly start-dependencies,
due to the randomness in the append workload. The runtime
of our checking algorithm is stable and grows linearly. This is
expected because the back-edge-based DFS cycle detection
algorithm costs linear time.
Comparing with the baseline plus an optimization. People
can apply an optimization to significantly reduce the number
of start-dependency edges. That is, instead of adding start-
dependency edges for each pair of transactions that has a
start-dependency relation, one can only add start-dependency
edges for consecutive transactions. For example, if T1

start−−−→
T2

start−−−→ T3, we do not include the edge T1
start−−−→ T3.

Figure 2 shows the solving time, not the checker runtime, af-
ter applying this optimization. We only show the solving time
because the time of building graphs dominates the end-to-end
runtime for the large histories. For the largest (5000s) history,
our checker takes 12.00s to build the graph and finishes in
12.16s; the baseline takes 11.79s to build the graph and fin-
ishes in 13.10s. In production, the graph building and history
collection can be pipelined, hence is not on the critical path.
Therefore, Figure 2 only shows the time of the solving phase,
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Figure 2. Our checking algorithm outperforms the baseline plus the
optimization of start-dependency edges. Notice that the y-axis is the
solving time (instead of the checker runtime) in log-scale.
the phase of cycle detections on a graph. From the figure, we
can see that our checking algorithm outperforms the baseline
consistently even having applied the optimization.

6 Related work
The most related work to our SI definition is Adya’s SI defini-
tion [7, 8], both of which are based on graphs. The difference
is that Adya SI is defined on serialization graphs (where nodes
are transactions), whereas our SI definition is based on BC-
graphs (in which a node is either a begin or a commit event).
We prove that the two definitions are equivalent (§4). Adya et
al. [8] choose serialization graphs because the graphs cover
other isolation levels, hence a unified framework is preferable,
despite complicating the definition of SI. Our SI definition
however targets SI only and aims at simplicity and checking
performance. It is our future work to study if we can extend
BC-graphs to other isolation levels.

Crooks et al. [17, 18] propose the first client-centric isola-
tion level definition, which treat databases as black boxes and
do not require any internal information from the databases.
Our SI definition is “white-box”, as we assume having the
knowledge of all internal information, including the time-
precedes order (≺t) and the version order (≪).

There are several other isolation level definitions [12, 24,
34]. In terms of SI, they are equivalent to Adya SI [15], thus
are equivalent to ours. These definitions are based on axioms
and/or operations (instead of graphs), hence are easier to in-
tegrate with program verification and can be used to prove
application properties end-to-end. Meanwhile, our SI defini-
tion focuses on checking SI of databases, and application logic
is out of our scope. Therefore, checking our SI is likely faster
than checking their definitions.

7 Conclusion
This paper presents a new definition of Snapshot Isolation
(SI) based on BC-graphs. This new definition aligns well with
Serializability, making it more accessible. We prove that our
definition is equivalent to Adya SI. In addition, our definition
introduces a fast SI checking algorithm, which, according
to our empirical studies, outperforms an implementation of
checking Adya SI.
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