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Abstract
Mappings are ubiquitous in computer systems, such as trans-
lating virtual memory to physical memory, file paths to inode
numbers, database keys to data locations. Traditional system
mappings are often hand-crafted and data-agnostic. In this
paper, we explore the use of neural networks as learned map-
pings that are automatically generated and data-dependent,
optimizing performance for specific workloads and scenarios.
Unlike prior learned structures, we employ a portfolio method
consisting of a set of independent neural networks, each re-
sponsible for making sole decisions. Our preliminary results
indicate that these portfolio mappings can generalize across
multiple applications.
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1 Introduction
Mappings associate a set of data with another set of data.
In computer systems, they are fundamental building blocks,
and they are everywhere. For example, virtual memory maps
virtual addresses to physical addresses; directory mappings
translate paths to inodes (a data structure representing files
and folders); database indexes get database keys and return
data positions; packet classification maps network packets to
the actions the routers need to take.

All of these are examples of mappings in systems. Though
having the same functionality in principle (namely mapping),
these mappings’ implementations are vastly different. Virtual
memory uses radix trees (i.e., 4/5-level page tables) and is
implemented in hardware. The directory mapping uses hi-
erarchical trees (i.e., the file system namespace); Databases
indexes use many data structures, like B-Tree, hash table, and
bitmap. Packet classification uses Trie and sometimes others.
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It makes a lot of sense to tailor mappings for different sys-
tems because these mappings require different performance,
have different hardware constraints, and some need to sup-
port advanced operations (e.g., prefix query, range query).
We call these mappings tailored for different systems, system-
optimized mappings.

In this paper, we want to go one step further: we want to
optimize mappings for each instance—a user, an application,
a workload, or even a period of time (e.g., during the peak load
of a day). We call these mappings instance-optimized map-
pings. Why do people want instance-optimized mappings?
The answer is performance. Instances have their own char-
acteristics and exploiting these characteristics usually offer
unprecedented performance. Another way to see this is that
a system-optimized mapping exploits the properties of a par-
ticular system, so it works better for this system than others;
whereas an instance-optimized mapping further exploits the
characteristics of a particular instance, so it works even better
for the given instance (e.g., a workload). People have observed
this in different setups before [5, 9, 11, 12, 15].

However, implementing instance-optimized mappings in a
traditional way—like how we build system-optimized map-
pings before—does not work, for two reasons. First, it will
be too expensive and not scalable. People cannot afford the
engineering efforts to tailor algorithms and data structures for
every single instance. Second, humans are unable to capture
the sophisticated heuristics that an instances carries.

Therefore, we need an approach that (a) automatically
builds the mappings without too much human efforts,
and (b) discovers complex instance-specific heuristics for
better performance. In this paper, we propose such an
approach which constructs a learned mapping based on neural
networks, called portfolio mappings. Portfolio mappings
adapt to different systems and learn heuristics from data with
minimum human efforts.

The basic idea is as follows. A set of neural networks learns
the instance’s mapping independently. Each network covers a
fraction of the input space. When serving a query, a selector
picks a network that can handle the query; the picked network
produces an output; and a tuner calibrates the network’s output.
Figure 1 overviews an abstract mapping, a classic directory
mapping, and a portfolio mapping.

Portfolio mappings differ from existing learned struc-
tures [3, 4, 13, 19] in a combination of three design choices:
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Figure 1. Mapping overview. An abstract mapping is depicted on the
left, a traditional directory mapping in the middle, and a portfolio
mapping on the right.

1 compared with prior work, portfolio mappings use non-
trivial neural networks1; 2 neural networks are independent;
and 3 every network makes sole decisions.

These lead to unique properties that portfolio mappings
offer. First, compared with existing learned structures, port-
folio mappings are versatile and can operate on mappings
from multi-dimensional inputs to multi-dimensional outputs
(Rn → Rn) without requiring prior assumptions about the
underlying systems. This is due to our choice 1 , using non-
trivial neural networks. Second, seemingly, portfolio map-
pings are similar to ensemble models [6]: both comprise a set
of models. In fact, they are fundamentally different. Ensemble
models rely on “crowd wisdom” to make decisions, whereas
portfolio mappings’ networks make sole decisions (choice 3 ).
Finally, portfolio mappings are update-friendly. Since all neu-
ral networks are independent ( 2 ) and each serves a fraction
of the input space, people can partially update the mapping
when facing data drifting. All these benefits of course come
with a cost: the training time of portfolio mappings is signifi-
cantly higher than prior work, which sometimes could take
three hours (§4).

2 Setup, definition, and goals
Setup. In the use cases of mappings in computer systems,
there are three roles: an application, a mapping, and a piece
of back-end data. An application (like a file system) sends
a query op and its input x (e.g., open a file) to a mapping.
The mapping executes op(x) and returns to the application an
output y (e.g., an inode number). In this process, the mapping
will interact with the back-end data (e.g., the inode table on
disk) multiple times to locate y.

Take the classic Unix file system as an example. When
a program calls open(/tmp/a/b,...), the file system
walks the directory mapping: the file system starts from the

1As we will show later, the models we use are fully-connected feed-forward
neural networks, which, while more sophisticated than linear models and
other simple models used by existing learned structures, are still considered
“simple” from a machine learning perspective.

root “/”, loads the inode of “/” from the inode table, then
looks for “tmp” in the content of the folder “/”, and gets
the inode number of the folder “tmp”. Next, the file system
repeats this process of searching the inode of “a” and “b”.
Finally, the file system returns the inode number of the file
“b”. Instead of walking a tree, portfolio mappings learn the
path-to-inode mapping directly via neural networks (§4).

In this paper, we define the mapping used in computer
systems as follows.
Definition 1 (Mapping in systems). A mapping is a function
f , such that

f : Q × X → Y
where: Q is a set of query types; X is the domain: for example,
a set of strings, integers, floats, or arrays of previous primi-
tive types; and Y is the range: for example, a set of integers,
booleans or floats.

Consider the above directory mapping. A dir mapping in a
file system has X = strings (i.e., paths) and Y = integers (i.e.,
inode numbers pointing to the inode table).

Portfolio mappings support three types of queries (op):
1. prefix-query: query all items that share the same prefix, for

example, listing all files under a folder in a file system.
2. range-query: query all items within a given range, for ex-

ample, getting students whose ages are between 10 and 12
in a database.

3. point-query: query the item indexed by a key, for example,
querying the rule that should apply to a packet in a network
swtich, or returning the value of a key in a key-value store.

Goals. A portfolio mapping is optimized for an instance. For
the targeted instance, we expect that (a) the portfolio mapping
has good performance: it has higher throughputs or lower
latencies compared with classic data-agnostic mappings, and
(b) the portfolio mapping is smaller in size: it should consume
fewer memory than traditional data structures.

Compared with existing learned structures [3, 4, 13, 16],
we expect portfolio mappings to be more general: they sup-
port different input types (e.g., multi-dimensional inputs) and
various operations (e.g., prefix-query) in computer systems.
Non-goals. We do not expect portfolio mappings to replace
traditional data structures. For one, there are limited scenarios
when applications are bottlenecked by mappings. For another,
the performance squeezed by portfolio mappings is at the
cost of training time. If a mapping is used infrequently or is
constantly changing, the benefits may not cover the efforts.

We do not expect portfolio mappings to outperform special-
ized learned structures in domains that they are designed for.
Take database index as an example. Many existing learned
indexes [4, 9] are highly optimized for the 1D-input-to-1D-
output mapping problem via linear models. Portfolio map-
pings use neural networks which are fundamentally less ef-
ficient than linear models in this problem. Neural networks
however are more general.



3 Portfolio mapping preview
Below is a preview of portfolio mapping: we describe how a
portfolio mapping works using an example. We also briefly
introduce how a portfolio mapping is trained.
Overview. Portfolio mapping has three main components: a
selector, a tuner, and a set of neural networks.

The selector encodes an input (like a path) into a tensor,
chooses a neural network, and feeds the tensor to the network.
The input-tensor encoding is designed by developers for each
of the systems. As an example, for the directory mapping, we
split a path by “/” into an array of tokens, each of which is
a string representing a file or a folder. Then, we apply a hash
function to translate each token to a floating-point number
∈ (0, 1). The picked network then does an inference for the
input tensor and produces an output tensor (a one-dimensional
tensor in the file system example). Finally, given the network’s
output, the tuner will binary search on the back-end data (e.g.,
an inode table) for the true result of the query.
Executing a dir-mapping query: an example. To illustrate
how portfolio mapping works, we use a toy example of
directory mapping to execute open("/tmp/abc/def",
...). Figure 2 depicts the workflow.

To locate the file /tmp/abc, the selector first encodes the
path into a tensor [0.373,0.68,0,...,0], where “tmp”
and “abc” are hashed into 0.373 and 0.68, respectively.
The length of the tensor is fixed for each file system (in our
case, 20-dimensional tensors); any outliers with >20 nested
folders will be handled using a fallback traditional approach.

Next, the selector picks a neural network based on its knowl-
edge of which network satisfies which input domain. In our
example, it chooses the left-most network in Figure 2. The net-
work then outputs [0.797] which is a normalized position
pointing to the slot 14346 on the inode table.

Finally, the tuner fetches the disk block containing 14346
from the disk, and conducts binary search to locate the tar-
geted inode named “/tmp/abc” (the inode table is sorted).
If the target inode is close to 14346, like the case in Fig-
ure 2, then the loaded block (now in memory) likely contains
the wanted inode, hence portfolio mapping does not have to
further interact with the disk. Otherwise, portfolio mapping
needs to load more blocks from the disk.
Training and composing. Building a portfolio mapping has
two phases: a training phase and a composing phase.

The training phase creates a set of neural networks that learn
the data distribution of a system’s mapping. The expectation is
that each network covers some subsets of the input space and
all the trained networks together cover the entire space. We
use brute-force testing to understand whether a given network
supports an input segment; namely, if the network’s outputs
are within an error bound. The training finally produces a set
of candidate networks with their supported segments.
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Figure 2. The workflow of portfolio mapping serving a query. The
mapping will return inode 14347 (the shaded entry).

The raw candidate networks contain much redundancy. To
save memory, a composing procedure selects a small subset
of candidate networks that still covers the entire input space.
Selecting the minimum subset is an optimization problem.
We use a heuristic algorithm to construct this subset. Given
the selected networks, we construct a selector for each port-
folio mapping. The selector is a responsible table: an array
that splits input space into segments, and each segment corre-
sponds to one network which covers this input segment.

4 Preliminary results
We answer the following questions:
• How long does it take to inference the portfolio mapping

structure compare to the baselines?
• How long does it take to build portfolio mapping structure

compare to the baselines?

Setup. All experiments are conducted using a modified ver-
sion of the SOSD benchmark [14], a standard benchmark suite
for learned index. We extend SOSD to accommodate multidi-
mensional key datasets for file system and packet classification
applications. For model inference, we run experiments on a
desktop with an Intel i7-12700K CPU, 16 GB memory, and
Arch Linux with Kernel 6.9.7. For training, we use a Pow-
erEdge R750XA server equipped with Intel Xeon Gold 6342
CPUs, 1TB memory, NVIDIA H100 GPUs, and Ubuntu 22.04.
We use one GPU to train models in the following experiments.
Applications and benchmarks. We apply portfolio mappings
to three applications: integer database index, filesystem path
resolution, and network packet classification.
• Integer database index: Integer database indices map inte-

ger keys to integer positions within the database, facilitating
the retrieval of values. All keys are assumed to be unique
and sorted in ascending order. We use Books and Wiki
databases from SOSD [14] with 10 million keys.

• Filesystem path resolution: For the file path resolution,
paths (strings) map to inode numbers (integers); each path
points to a unique inode number. We collect 100K file paths
from an Arch Linux machine and covert the collected paths
into 20-dimensional tensors.



Mapping App Dataset Runtime (inference) Size (KB) Build time (s)

Portfolio
mappings

DB index Books 110ns (94ns) 383 1303
Wiki 170ns (132ns) 3940 11408

File path Arch-fs 152ns (114ns) 2497 1486
Packet ClassBench 185ns (146ns) 3415 3037

RMI DB index Books 139ns (–) 3.08 0.34
Wiki 262ns (–) 3.08 0.33

BTtree DB index Books 195ns (–) 139321 0.04
Wiki 196ns (–) 139321 0.04

SIndex File path Arch-fs 189ns (–) 6.08 25.84

Figure 3. Runtime, mapping size, and build time for various mapping structures. The column “Runtime (inference)” shows the end-to-end
query time, with the time spent on model inference for portfolio mappings indicated in parentheses.

• Packet classification: Network components, such as routers,
often need to classify packets based on their five-tuple
headers—source IP, destination IP, source port number, des-
tination port number, and protocol. A packet classification
structure maps each five-tuple header to a corresponding
rule, identified by a rule ID (an integer). We use Class-
Bench [17], a standard benchmark for packet classification,
to generate 5K rules.

Baselines. To demonstrate that portfolio mappings outperform
traditional indices, we compare them with BTrees. We use the
STX B+ tree implementation from SOSD [14]. In addition,
we also compare portfolio mappings with existing specialized
learned structures: RMI [10], designed for integer indices, and
SIndex [19], designed for string (e.g., path) indices.
Preliminary results. For database index, we use two inte-
ger key datasets from the SOSD benchmark: Books, which
contains book sales popularity data from Amazon [1], and
Wiki, which includes Wikipedia article edit times [2]. Each
dataset is composed of 10 million unsigned 4-byte integer
keys, down-sampled from the original datasets included in
SOSD. For each dataset, we conducted 1 million random key
lookups with a batch size of 1 using a single thread.

For file system path evaluation, we collected real file paths
by traversing the file system of a Arch Linux 6.9.7 machine.
We use the MD5 hash function to convert file names and direc-
tory names into 4-byte integers. Each file path is then encoded
as a 20-dimensional integer vector. We handle longer paths
separately, as they represent only a small number of cases.
Each file path maps to a unique inode number. During experi-
ments, we query the portfolio mappings for the inode number
of each path at an random order.

For packet classification, we employ ClassBench [17] to
generate 5K packet filtering rules. We then generate 100K
randomly sampled IP addresses based on these rules for infer-
ence. For this experiment, we assume the rules do not overlap,
with each sampled IP address corresponding to a unique rule.

We use a single GPU to train portfolio mappings. The
mapping architecture is consistent across all three applica-
tions, comprising fully-connected feed-forward neural net-
works with two hidden layers with 32 neurons per layer. Fig-
ure 3 shows the preliminary results for all mappings.

In our experiments across three applications, portfolio map-
pings achieve performance comparable to specialized learned
structures and surpass traditional indexes like B-Trees. Addi-
tionally, portfolio mappings generalize to all three applications
without the need for specialized customization.

5 Discussion, future work, and conclusion
Pros and cons of learned mappings. Compared to tradi-
tional data structures, learned mappings—including portfolio
mappings—have an unfair advantage: they spend time study-
ing the data through training and possess prior knowledge
when serving queries. Traditional mapping data structures, on
the other hand, are data agnostic.

Being data-aware fundamentally has pros and cons. The
benefit is that the learned data structures work exceptionally
well with the data distribution they have been trained on. How-
ever, the drawback is that if the data changes, updating these
structures can be challenging and expensive. We design portfo-
lio mappings to balance the pros and cons by sacrificing some
efficiency for broader generalization. So, we would position
portfolio mappings between the traditional data structures and
learned data structures designed for specific applications.
Accelerating portfolio mapping inference. While portfolio
mappings may not currently perform as well as simple ma-
chine learning models on today’s CPUs (§4), they stand to gain
significantly as neural networks—the foundational building
blocks of deep learning—continue to be heavily optimized.
The rise of AI-optimized hardware, particularly the emergence
of AI PCs [7, 8, 18] with features like matrix multiplication in-
structions and embedded neural network accelerators in CPUs,
offers a significant opportunity. Portfolio mappings can lever-
age these optimizations effortlessly, reducing the performance



gap with specialized learned data structures. Our future work
is to port portfolio mappings to those hardware.
Outrageously expensive training. As shown earlier (§4),
training portfolio mappings is costly, representing their major
limitation. The training process faces two primary bottlenecks:
first, the training of individual neural networks, and second,
the iterative rounds required to train a sufficient number of
neural network candidates to cover the entire input space.
Based on our experience, training time increases rapidly with
dataset size, leading to scalability challenges. Our future work
aims to reduce training time by focusing on simplifying these
two phases.
Conclusion. This paper introduces portfolio mappings, a new
learned mapping structure that sits between traditional map-
ping structures and specialized learned models, balancing
runtime performance and generalization. We envision that fu-
ture computer systems will increasingly require more general-
purpose, instance-optimized components. Portfolio mappings
represent the first step toward realizing this vision.
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